scholarly journals CO Observations of Bright IRAS Galaxies

1987 ◽  
Vol 115 ◽  
pp. 653-653
Author(s):  
D. B. Sanders

CO emission has been detected from 75 bright infrared galaxies with CZ = 2 000 – 16 000 km/s. These include the most distant and the most luminous galaxies (Arp 55, IR 1713+63) yet detected in CO. All of these galaxies are rich in molecular gas with Mtotal (H2) = 2 × 109 −6x1010 M⊙, and they have a strong far-infrared excess, with LFIR/LB = 2-40 and LFIR (40-400μ) = 1010 – 3 × 1012 L⊙. The primary luminosity source appears to be star formation in molecular clouds. A strong correlation is found between the FIR and 21-cm continuum flux, implying that the IMF is independent of the star formation rate. The ratio LFIR/M(H2) provides a measure of the current rate of star-formation, which is found to be a factor 3-20 larger in these galaxies than for the ensemble of molecular clouds in the Milky Way. VLA maps plus a few high resolution (14″-30″) CO (1-0) and CO (2-1) maps suggest that most of the luminosity comes from core regions 1-3 kpc in size. The abnormal concentration of molecular gas in these galactic cores is presumably the result of a collision or strong interaction with a nearby companion.

2020 ◽  
Vol 496 (1) ◽  
pp. L38-L42
Author(s):  
Kaiyi Du ◽  
Yong Shi ◽  
Zhi-Yu Zhang ◽  
Junzhi Wang ◽  
Yu Gao

ABSTRACT In most galaxies like the Milky Way, stars form in clouds of molecular gas. Unlike the CO emission that traces the bulk of molecular gas, the rotational transitions of HCN and CS molecules mainly probe the dense phase of molecular gas, which has a tight and almost linear relation with the far-infrared luminosity and star formation rate (SFR). However, it is unclear whether dense molecular gas exists at very low metallicity, and if exists, how it is related to star formation. In this work, we report ALMA observations of the CS J = 5 → 4 emission line of DDO 70, a nearby gas-rich dwarf galaxy with $\sim \!7{{\ \rm per\ cent}}$ solar metallicity. We did not detect CS emission from all regions with strong CO emission. After stacking all CS spectra from CO-bright clumps, we find no more than a marginal detection of CS J = 5 → 4 transition, at a signal-to-noise ratio of ∼3.3. This 3σ upper limit deviates from the $L^\prime _{\rm CS}$–LIR and $L^\prime _{\rm CS}$–SFR relationships found in local star-forming galaxies and dense clumps in the Milky Way, implying weaker CS emission at given infrared luminosity and SFR. We discuss the possible mechanisms that suppress CS emission at low metallicity.


2018 ◽  
Vol 615 ◽  
pp. A122 ◽  
Author(s):  
S. König ◽  
S. Aalto ◽  
S. Muller ◽  
J. S. Gallagher III ◽  
R. J. Beswick ◽  
...  

Context. Minor mergers are important processes contributing significantly to how galaxies evolve across the age of the Universe. Their impact on the growth of supermassive black holes and star formation is profound – about half of the star formation activity in the local Universe is the result of minor mergers. Aims. The detailed study of dense molecular gas in galaxies provides an important test of the validity of the relation between star formation rate and HCN luminosity on different galactic scales – from whole galaxies to giant molecular clouds in their molecular gas-rich centers. Methods. We use observations of HCN and HCO+ 1−0 with NOEMA and of CO3−2 with the SMA to study the properties of the dense molecular gas in the Medusa merger (NGC 4194) at 1′′ resolution. In particular, we compare the distribution of these dense gas tracers with CO2−1 high-resolution maps in the Medusa merger. To characterize gas properties, we calculate the brightness temperature ratios between the three tracers and use them in conjunction with a non-local thermodynamic equilibrium (non-LTE) radiative line transfer model. Results. The gas represented by HCN and HCO+ 1−0, and CO3−2 does not occupy the same structures as the less dense gas associated with the lower-J CO emission. Interestingly, the only emission from dense gas is detected in a 200 pc region within the “Eye of the Medusa”, an asymmetric 500 pc off-nuclear concentration of molecular gas. Surprisingly, no HCN or HCO+ is detected for the extended starburst of the Medusa merger. Additionally, there are only small amounts of HCN or HCO+ associated with the active galactic nucleus. The CO3−2/2−1 brightness temperature ratio inside “the Eye” is ~2.5 – the highest ratio found so far – implying optically thin CO emission. The CO2−1/HCN 1−0 (~9.8) and CO2−1/HCO+ 1−0 (~7.9) ratios show that the dense gas filling factor must be relatively high in the central region, consistent with the elevated CO3−1/2−1 ratio. Conclusions. The line ratios reveal an extreme, fragmented molecular cloud population inside the Eye with large bulk temperatures (T > 300 K) and high gas densities (n(H2) > 104 cm-3). This is very different from the cool, self-gravitating structures of giant molecular clouds normally found in the disks of galaxies. The Eye of the Medusa is found at an interface between a large-scale minor axis inflow and the central region of the Medusa. Hence, the extreme conditions inside the Eye may be the result of the radiative and mechanical feedback from a deeply embedded, young and massive super star cluster formed due to the gas pile-up at the intersection. Alternatively, shocks from the inflowing gas entering the central region of the Medusa may be strong enough to shock and fragment the gas. For both scenarios, however, it appears that the HCN and HCO+ dense gas tracers are not probing star formation, but instead a post-starburst and/or shocked ISM that is too hot and fragmented to form newstars. Thus, caution is advised in taking the detection of emission from dense gas tracers as evidence of ongoing or imminent star formation.


2017 ◽  
Vol 608 ◽  
pp. A98 ◽  
Author(s):  
Q. Salomé ◽  
P. Salomé ◽  
M.-A. Miville-Deschênes ◽  
F. Combes ◽  
S. Hamer

NGC 5128 (Centaurus A) is one of the best targets to study AGN feedback in the local Universe. At 13.5 kpc from the galaxy, optical filaments with recent star formation lie along the radio jet direction. This region is a testbed for positive feedback, here through jet-induced star formation. Atacama Pathfinder EXperiment (APEX) observations have revealed strong CO emission in star-forming regions and in regions with no detected tracers of star formation activity. In cases where star formation is observed, this activity appears to be inefficient compared to the Kennicutt-Schmidt relation. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to map the 12CO(1–0) emission all along the filaments of NGC 5128 at a resolution of 1.3′′ ~ 23.8pc. We find that the CO emission is clumpy and is distributed in two main structures: (i) the Horseshoe complex, located outside the HI cloud, where gas is mostly excited by shocks and where no star formation is observed, and (ii) the Vertical filament, located at the edge of the HI shell, which is a region of moderate star formation. We identified 140 molecular clouds using a clustering method applied to the CO data cube. A statistical study reveals that these clouds have very similar physical properties, such as size, velocity dispersion, and mass, as in the inner Milky Way. However, the range of radius available with the present ALMA observations does not enable us to investigate whether or not the clouds follow the Larson relation. The large virial parameter αvir of the clouds suggests that gravity is not dominant and clouds are not gravitationally unstable. Finally, the total energy injection in the northern filaments of Centaurus A is of the same order as in the inner part of the Milky Way. The strong CO emission detected in the northern filaments is an indication that the energy injected by the jet acts positively in the formation of dense molecular gas. The relatively high virial parameter of the molecular clouds suggests that the injected kinetic energy is too strong for star formation to be efficient. This is particularly the case in the horseshoe complex, where the virial parameter is the largest and where strong CO is detected with no associated star formation. This is the first evidence of AGN positive feedback in the sense of forming molecular gas through shocks, associated with low star formation efficiency due to turbulence injection by the interaction with the radio jet.


2008 ◽  
Vol 4 (S256) ◽  
pp. 148-153
Author(s):  
Caroline Bot ◽  
Mónica Rubio ◽  
François Boulanger ◽  
Marcus Albrecht ◽  
Frank Bertoldi ◽  
...  

AbstractThe amount of molecular gas is a key for understanding the future star formation in a galaxy. However, this quantity is difficult to infer as the cold H2 is almost impossible to observe and, especially at low metallicities, CO only traces part of the clouds, keeping large envelopes of H2 hidden from observations. In this context, millimeter dust emission tracing the cold and dense regions can be used as a tracer to unveil the total molecular gas masses. I present studies of a sample of giant molecular clouds in the Small Magellanic Cloud. These clouds have been observed in the millimeter and sub-millimeter continuum of dust emission: with SIMBA/SEST at 1.2 mm and the new LABOCA bolometer on APEX at 870 μm. Combining these with radio data for each cloud, the spectral energy distribution of dust emission are obtained and gas masses are inferred. The molecular cloud masses are found to be systematically larger than the virial masses deduced from CO emission. Therefore, the molecular gas mass in the SMC has been underestimated by CO observations, even through the dynamical masses. This result confirms what was previously observed by Bot et al. (2007). We discuss possible interpretations of the mass discrepancy observed: in the giant molecular clouds of the SMC, part of cloud's support against gravity could be given by a magnetic field. Alternatively, the inclusion of surface terms in the virial theorem for turbulent clouds could reproduce the observed results and the giant molecular clouds could be transient structures.


2017 ◽  
Vol 608 ◽  
pp. A48 ◽  
Author(s):  
H. Dannerbauer ◽  
M. D. Lehnert ◽  
B. Emonts ◽  
B. Ziegler ◽  
B. Altieri ◽  
...  

It is not yet known if the properties of molecular gas in distant protocluster galaxies are significantly affected by their environment as galaxies are in local clusters. Through a deep, 64 h of effective on-source integration with the Australian Telescope Compact Array (ATCA), we discovered a massive, Mmol = 2.0 ± 0.2× 1011 M⊙, extended, ~40 kpc, CO(1–0)-emitting disk in the protocluster surrounding the radio galaxy, MRC 1138−262. The galaxy, at zCO = 2.1478, is a clumpy, massive disk galaxy, M∗ ~ 5 × 1011 M⊙, which lies 250 kpc in projection from MRC 1138−262 and is a known Hα emitter, named HAE229. This source has a molecular gas fraction of ~30%. The CO emission has a kinematic gradient along its major axis, centered on the highest surface brightness rest-frame optical emission, consistent with HAE229 being a rotating disk. Surprisingly, a significant fraction of the CO emission lies outside of the UV/optical emission. In spite of this, HAE229 follows the same relation between star-formation rate and molecular gas mass as normal field galaxies. HAE229 is the first CO(1–0) detection of an ordinary, star-forming galaxy in a protocluster. We compare a sample of cluster members at z > 0.4 thatare detected in low-order CO transitions, with a similar sample of sources drawn from the field. We confirm findings that the CO-luminosity and full-width at half maximum are correlated in starbursts and show that this relation is valid for normal high-z galaxies as well as for those in overdensities. We do not find a clear dichotomy in the integrated Schmidt-Kennicutt relation for protocluster and field galaxies. Our results suggest that environment does not have an impact on the “star-formation efficiency” or the molecular gas content of high-redshift galaxies. Not finding any environmental dependence in these characteristics, especially for such an extended CO disk, suggests that environmentally-specific processes such as ram pressure stripping do not operate efficiently in (proto)clusters.


1987 ◽  
Vol 115 ◽  
pp. 628-630 ◽  
Author(s):  
T. Handa ◽  
Y. Sofue ◽  
N. Nakai ◽  
M. Fujimoto ◽  
M. Hayashi

CO observations of the nuclear region of the SABc galaxy M83 have been made with the 45-m telescope at NRO. A bar-like elongation of the CO emission along the optical bar and a velocity field which suggests noncircular motions are found. These results are consistent with predictions based on the theoretical model of barred spiral galaxies. The inflow and concentration of molecular gas in the nucleus of M83 may supply raw material which maintains a burst of star formation there.


2020 ◽  
Vol 493 (4) ◽  
pp. 5273-5289 ◽  
Author(s):  
Lucia Armillotta ◽  
Mark R Krumholz ◽  
Enrico M Di Teodoro

ABSTRACT We use the hydrodynamical simulation of our inner Galaxy presented in Armillotta et al. to study the gas distribution and kinematics within the Central Molecular Zone (CMZ). We use a resolution high enough to capture the gas emitting in dense molecular tracers such as NH3 and HCN, and simulate a time window of 50 Myr, long enough to capture phases during which the CMZ experiences both quiescent and intense star formation. We then post-process the simulated CMZ to calculate its spatially dependent chemical and thermal state, producing synthetic emission data cubes and maps of both H i and the molecular gas tracers CO, NH3, and HCN. We show that, as viewed from Earth, gas in the CMZ is distributed mainly in two parallel and elongated features extending from positive longitudes and velocities to negative longitudes and velocities. The molecular gas emission within these two streams is not uniform, and it is mostly associated with the region where gas flowing towards the Galactic Centre through the dust lanes collides with gas orbiting within the ring. Our simulated data cubes reproduce a number of features found in the observed CMZ. However, some discrepancies emerge when we use our results to interpret the position of individual molecular clouds. Finally, we show that, when the CMZ is near a period of intense star formation, the ring is mostly fragmented as a consequence of supernova feedback, and the bulk of the emission comes from star-forming molecular clouds. This correlation between morphology and star formation rate should be detectable in observations of extragalactic CMZs.


2015 ◽  
Vol 10 (S314) ◽  
pp. 8-15
Author(s):  
Charles J. Lada

AbstractStudies of molecular clouds and young stars near the sun have provided invaluable insights into the process of star formation. Indeed, much of our physical understanding of this topic has been derived from such studies. Perhaps the two most fundamental problems confronting star formation research today are: 1) determining the origin of stellar mass and 2) deciphering the nature of the physical processes that control the star formation rate in molecular gas. As I will briefly outline here, observations and studies of local star forming regions are making particularly significant contributions toward the solution of both these important problems.


2019 ◽  
Vol 71 (Supplement_1) ◽  
Author(s):  
Kazufumi Torii ◽  
Shinji Fujita ◽  
Atsushi Nishimura ◽  
Kazuki Tokuda ◽  
Mikito Kohno ◽  
...  

Abstract Recent observations of the nearby Galactic molecular clouds indicate that the dense gas in molecular clouds has quasi-universal properties on star formation, and observational studies of extra-galaxies have shown a galactic-scale correlation between the star formation rate (SFR) and the surface density of molecular gas. To reach a comprehensive understanding of both properties, it is important to quantify the fractional mass of dense gas in molecular clouds, fDG. In particular, for the Milky Way (MW) there are no previous studies resolving fDG disk over a scale of several kpc. In this study, fDG was measured over 5 kpc in the first quadrant of the MW, based on the CO J = 1–0 data in l = 10°–50° obtained as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) project. The total molecular mass was measured using 12CO, and the dense gas mass was estimated using C18O. The fractional masses, including fDG, in the region within ±30% of the distances to the tangential points of the Galactic rotation (e.g., the Galactic Bar, Far-3 kpc Arm, Norma Arm, Scutum Arm, Sagittarius Arm, and inter-arm regions) were measured. As a result, an averaged fDG of $2.9^{+2.6}_{-2.6}$% was obtained for the entirety of the target region. This low value suggests that dense gas formation is the primary factor in inefficient star formation in galaxies. It was also found that fDG shows large variations depending on the structures in the MW disk. In the Galactic arms, fDG was estimated to be ∼4%–5%, while in the bar and inter-arm regions it was as small as ∼0.1%–0.4%. These results indicate that the formation/destruction processes of the dense gas and their timescales are different for different regions in the MW, leading to differences in Star formation efficiencies.


Author(s):  
Thiago S. Gonçalves

AbstractHow is gas converted into stars across cosmic time? Observations of star-forming galaxies at high redshift indicate that the conditions of the interstellar medium (ISM) were remarkably distinct from typical spirals in the local universe. Nevertheless, these observations are biased towards objects brighter than L*, due to the large luminosity distances involved. Here I present a survey targeting the molecular gas in galaxies at low redshift (z ~ 0.2) with ISM conditions remarkably similar to those observed at earlier epochs, including high star formation rates and lower metallicities. CO observations performed with CARMA indicate that these galaxies follow the same star-formation law as local spirals and other galaxies at the same redshift, albeit at much higher densities. We also present recent results from our ALMA program studying galaxies down to 12 + log(O/H) ~ 8, and discuss the implications of these data to our understanding of the molecular gas reservoir and the conversion factor between CO luminosity and gas mass in environments that are simultaneously low in metal content and extremely dense.


Sign in / Sign up

Export Citation Format

Share Document