scholarly journals Large solar-type magnetic reconnection model for magnetar giant flare

2008 ◽  
Vol 4 (S259) ◽  
pp. 123-124
Author(s):  
Youhei Masada

AbstractWe construct a magnetic reconnection model for magnetar giant flare in the framework of solar flare/coronal mass ejection theory. As is the case with the solar flare, the explosive magnetic reconnection plays a crucial role in the energetics of the magnetar flare. A key physics controlling the energy transport in the system, on the other hand, is the radiative process unlike that in the solar flare. After the release of the magnetic energy via the magnetic reconnection, the radiative heat flux drives the baryonic evaporation. Our model can predict that the baryonic matter evaporated in the preflare stage would be the origin of the radio emitting ejecta observed in association with the giant flare on 2004 December 27 from SGR1806-20.

Author(s):  
Hugh S. Hudson

The Carrington event in 1859, a solar flare with an associated geomagnetic storm, has served as a prototype of possible superflare occurrence on the Sun. Recent geophysical (14C signatures in tree rings) and precise time-series photometry [the bolometric total solar irradiance (TSI) for the Sun, and the broadband photometry from Kepler and Transiting Exoplanet Survey Satellite, for the stars] have broadened our perspective on extreme events and the threats that they pose for Earth and for Earth-like exoplanets. This review assesses the mutual solar and/or stellar lessons learned and the status of our theoretical understanding of the new data, both stellar and solar, as they relate to the physics of the Carrington event. The discussion includes the event's implied coronal mass ejection, its potential “solar cosmic ray” production, and the observed geomagnetic disturbances based on the multimessenger information already available in that era. Taking the Carrington event as an exemplar of the most extreme solar event, and in the context of our rich modern knowledge of solar flare and/or coronal mass ejection events, we discuss the aspects of these processes that might be relevant to activity on solar-type stars, and in particular their superflares. ▪ The Carrington flare of 1859, though powerful, did not significantly exceed the magnitudes of the greatest events observed in the modern era. ▪ Stellar “superflare” events on solar-type stars may share common paradigms, and also suggest the possibility of a more extreme solar event at some time in the future. ▪ We benefit from comparing the better-known microphysics of solar flares and CMEs with the diversity of related stellar phenomena. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2016 ◽  
Vol 12 (S328) ◽  
pp. 22-29
Author(s):  
Hiroyuki Maehara

AbstractRecent high-precision photometry from space (e.g., Kepler) enables us to investigate the nature of “superflares” on solar-type stars. The bolometric energy of superflares detected by Kepler ranges from 1033 erg to 1036 erg which is 10-10,000 times larger than that released by a typical X10 class solar flare. The occurrence frequency (dN/dE) of superflares as a function of flare energy (E) shows the power-law distribution with the power-law index of ~−1.8 for 1034 < E < 1036 erg. Most of superflare stars show quasi-periodic light variations which suggest the presence of large starspots. The bolometric energy released by flares is consistent with the magnetic energy stored near the starspots. The occurrence frequency of superflares increases as the rotation period decreases. However, the energy of the largest flares observed in a given period bin does not show any clear correlation with the rotation period. These results suggest that superflares would occur on the slowly-rotating stars.


2012 ◽  
Vol 751 (1) ◽  
pp. 56 ◽  
Author(s):  
N. A. Murphy ◽  
M. P. Miralles ◽  
C. L. Pope ◽  
J. C. Raymond ◽  
H. D. Winter ◽  
...  

2010 ◽  
Vol 62 (4) ◽  
pp. 1093-1102 ◽  
Author(s):  
Youhei Masada ◽  
Shigehiro Nagataki ◽  
Kazunari Shibata ◽  
Toshio Terasawa

2022 ◽  
Vol 924 (1) ◽  
pp. L7
Author(s):  
Lei Lu ◽  
Li Feng ◽  
Alexander Warmuth ◽  
Astrid M. Veronig ◽  
Jing Huang ◽  
...  

Abstract Magnetic reconnection is a fundamental physical process converting magnetic energy into not only plasma energy but also particle energy in various astrophysical phenomena. In this Letter, we show a unique data set of a solar flare where various plasmoids were formed by a continually stretched current sheet. Extreme ultraviolet images captured reconnection inflows, outflows, and particularly the recurring plasma blobs (plasmoids). X-ray images reveal nonthermal emission sources at the lower end of the current sheet, presumably as large plasmoids with a sufficiently amount of energetic electrons trapped in them. In the radio domain, an upward, slowly drifting pulsation structure, followed by a rare pair of oppositely drifting structures, was observed. These structures are supposed to map the evolution of the primary and the secondary plasmoids formed in the current sheet. Our results on plasmoids at different locations and scales shed important light on the dynamics, plasma heating, particle acceleration, and transport processes in the turbulent current sheet and provide observational evidence for the cascading magnetic reconnection process.


2020 ◽  
Author(s):  
Gregory Fleishman ◽  
Dale Gary ◽  
Bin Chen ◽  
Sijie Yu ◽  
Natsuha Kuroda ◽  
...  

&lt;p&gt;Magnetic reconnection plays a central role in highly magnetized plasma, for example, in solar corona. Release of magnetic energy due to reconnection is believed to drive such transient phenomena as solar flares, eruptions, and jets. This energy release should be associated with a decrease of the coronal magnetic field. Quantitative measurements of the evolving magnetic field strength in the corona are required to find out where exactly and with what rate this decrease takes place. The only available methodology capable of providing such measurements employs microwave imaging spectroscopy of gyrosynchrotron emission from nonthermal electrons accelerated in flares. Here, we report microwave observations of a solar flare, showing spatial and temporal changes in the coronal magnetic field at the cusp region; well below the nominal reconnection X point. The field decays at a rate of ~5 Gauss per second for 2 minutes. This fast rate of decay implies a highly enhanced, turbulent magnetic diffusivity and sufficiently strong electric field to account for the particle acceleration that produces the microwave emission. Moreover, spatially resolved maps of the nonthermal and thermal electron densities derived from the same microwave spectroscopy data set allow us to detect the very acceleration site located within the cusp region. The nonthermal number density is extremely high, while the thermal one is undetectably low in this region indicative of a bulk acceleration process exactly where the magnetic field displays the fast decay. The decrease in stored magnetic energy is sufficient to power the solar flare, including the associated eruption, particle acceleration, and plasma heating. We discuss implications of these findings for understanding particle acceleration in solar flares and in a broader space plasma context.&lt;/p&gt;


1998 ◽  
Vol 188 ◽  
pp. 213-214
Author(s):  
T. Yokoyama ◽  
K. Shibata

Two-dimensional magnetohydrodynamic simulation of a solar flare is performed using a newly developed MHD code including nonlinear anisotropic heat conduction effect (Fig. 1; Yokoyama & Shibata 1997a). The numerical simulation starts with a vertical current sheet which is line-tied at one end to a dense chromosphere. The flare energy is released by the magnetic reconnection mechanism stimulated initially by the resistivity perturbation in the corona. The released thermal energy is transported into the chromosphere by heat conduction and drives chromospheric evaporation. Owing to the heat conduction effect, the adiabatic slow-mode MHD shocks emanated from the neutral point are dissociated into conduction fronts and isothermal shocks (Yokoyama & Shibata 1997b). Temperature and derived soft X-ray distributions are similar to the cusp-like structure of long-duration-event (LDE) flares observed by the soft X-ray telescope aboard Yohkoh satellite. On the other hand density and radio maps show a simple loop configuration which is consistent with the observation with Nobeyama Radio Heliograph. Two interesting new features are found. One is a pair of high density humps on the evaporated plasma loops formed at the collision site between the reconnection jet and the evaporation flow. The other is the loop-top blob behind the fast-mode MHD shock.


Sign in / Sign up

Export Citation Format

Share Document