scholarly journals Magnetic observations of pulsating B and Be stars with ESPaDOnS and Narval

2008 ◽  
Vol 4 (S259) ◽  
pp. 391-392
Author(s):  
James Silvester ◽  
C. Neiner ◽  
H. F. Henrichs ◽  
G. A. Wade ◽  
E. Alecian ◽  
...  

AbstractDiscoveries of magnetic fields in pulsating B and Be stars have been claimed from low-resolution spectropolarimetric observations with FORS1 at VLT. We used the new generation of high-resolution spectropolarimeters, ESPaDOnS at CFHT and NARVAL at TBL, to check for the existence of these fields. We find that most of the claimed magnetic stars do not host a magnetic field. This work shows the importance of a critical analysis of FORS1 data when searching for weak magnetic fields in early-type stars and the advantage of using ESPaDOnS and NARVAL to study such type of stars.

2018 ◽  
Vol 14 (A30) ◽  
pp. 123-123
Author(s):  
Markus Schöller ◽  
Swetlana Hubrig

AbstractModels of magnetically driven accretion reproduce many observational properties of T Tauri stars. For the more massive Herbig Ae/Be stars, the corresponding picture has been questioned lately, in part driven by the fact that their magnetic fields are typically one order of magnitude weaker. Indeed, the search for magnetic fields in Herbig Ae/Be stars has been quite time consuming, with a detection rate of about 10% (e.g. Alecian et al. 2008), also limited by the current potential to detect weak magnetic fields. Over the last two decades, magnetic fields were found in about twenty objects (Hubrig et al. 2015) and for only two Herbig Ae/Be stars was the magnetic field geometry constrained. Ababakr, Oudmaijer & Vink (2017) studied magnetospheric accretion in 56 Herbig Ae/Be stars and found that the behavior of Herbig Ae stars is similar to T Tauri stars, while Herbig Be stars earlier than B7/B8 are clearly different. The origin of the magnetic fields in Herbig Ae/Be stars is still under debate. Potential scenarios include the concentration of the interstellar magnetic field under magnetic flux conservation, pre-main-sequence dynamos during convective phases, mergers, or common envelope developments. The next step in this line of research will be a dedicated observing campaign to monitor about two dozen HAeBes over their rotation cycle.


2000 ◽  
Vol 175 ◽  
pp. 344-347
Author(s):  
M. Pogodin

AbstractNew results of high-resolution spectroscopy of four pre-main sequence Ae/Be stars are presented. An analysis of parameters of lines originating in different regions of the circumstellar (CS) envelope (Hα, Hβ, He I 5876, DNal) allows to reconstruct a picture of the interaction between the star and the CS environment which can be displayed in different forms. At least two separate processes seem to impact the structural and kinematical properties of the envelope: the stellar wind from the stellar surface and the matter infall onto the star from the CS media. A possible relation between these two phenomena is discussed in the framework of different models. Some similarity between observational phenomena in Herbig Ae/Be and classical Be stars is noted in spite of their difference in evolutionary status.


2021 ◽  
Vol 923 (1) ◽  
pp. 104
Author(s):  
Adam S. Jermyn ◽  
Matteo Cantiello

Abstract Early-type stars show a bimodal distribution of magnetic field strengths, with some showing very strong fields (≳1 kG) and others very weak fields (≲10 G). Recently, we proposed that this reflects the processing or lack thereof of fossil fields by subsurface convection zones. Stars with weak fossil fields process these at the surface into even weaker dynamo-generated fields, while in stars with stronger fossil fields magnetism inhibits convection, allowing the fossil field to remain as is. We now expand on this theory and explore the timescales involved in the evolution of near-surface magnetic fields. We find that mass loss strips near-surface regions faster than magnetic fields can diffuse through them. As a result, observations of surface magnetism directly probe the frozen-in remains of the convective dynamo. This explains the slow evolution of magnetism in stars with very weak fields: these dynamo-generated magnetic fields evolve on the timescale of the mass loss, not that of the dynamo.


2010 ◽  
Vol 6 (S272) ◽  
pp. 166-171
Author(s):  
Oleg Kochukhov ◽  
Thomas Rivinius ◽  
Mary E. Oksala ◽  
Iosif Romanyuk

AbstractDoppler imaging of early-type magnetic stars is the most advanced method to interpret their line profile variations. DI allows us to study directly a complex interplay between chemical spots, magnetic fields, and the mass loss. Here we outline the general principles of the surface mapping of stars, discuss adaption of this technique to early-type stars and present several recent examples of the abundance and magnetic mapping performed for rapidly rotating early-B stars. In particular, we present the first Doppler images for the very fast rotating He-rich star HR 7355 and a reconstruction of magnetic field for the well-known Bp star σ Ori E. We also present new magnetic maps for the He-strong star HD 37776, which possesses one of the most complex magnetic field topologies among the upper main sequence stars.


1994 ◽  
Vol 162 ◽  
pp. 184-185
Author(s):  
A.E. Dudorov

Observational data of the last 10 years allow two main conclusions:a) Main sequence stars can be separated in two classes: - magnetic (Bp) stars with surface strengths of a dipole or quadrupole magnetic field of Bs ≈ n · (102 − 103) G, n = 2,3,4…7, and - normal main sequence stars (F-O) with magnetic fields Bs ≈ 1 − 100 G (< 300 G);b) Typical star formation takes place in interstellar molecular clouds with magnetic field strengths B ≈ 10-5 G (See Dudorov 1990).


1993 ◽  
Vol 137 ◽  
pp. 497-511 ◽  
Author(s):  
Sergei V. Vorontsov

AbstractRotation and a magnetic field break the spherical symmetry of a star viewed as a pulsating system, lifting the degeneracy of oscillation frequencies, and leading to (sometimes prominent) observational consequences. Theoretical studies of rotational and magnetic effects in pulsating stars are reviewed, starting with simple configurations with slow rotation and weak magnetic fields.


1970 ◽  
Vol 4 ◽  
pp. 264-268
Author(s):  
G. A. E. Wright

AbstractAll observations of magnetic stars necessarily yield information only about their surface features. We are ignorant of the nature of the fields in the interiors of such stars, and equally we cannot be sure of the non-existence of interior fields in stars which are superficially non-magnetic. In fact, if we assume the truth of the ‘fossil’ theory – that the magnetic flux of an Ap star is a relic of the flux initially present in the gas cloud from which the star condensed – then it is surprising that magnetic stars are not observed to be much more common, since magnetic fields appear to be ubiquitous in interstellar gas clouds. For those stars with strong surface convection zones, we might expect that a fossil field of low energy would be expelled by the turbulence and would possibly be trapped in the interior. However, the majority of early-type stars with radiative envelopes also do not exhibit any observable magnetic field.


1976 ◽  
Vol 70 ◽  
pp. 165-178 ◽  
Author(s):  
Sara R. Heap

The history of ultraviolet studies of Be stars is barely ten years old. However, in the last decade, twelve major space experiments have observed Be stars in the ultraviolet region of the spectrum, and ultraviolet data for over 30 Be stars are now available in the literature. Table I shows some of the characteristics of the experiments. They include two rockets, five astronomical satellites, three manned satellites, and one planetary probe. Except for the rocket experiments, they are primarily survey instruments, which have provided ultraviolet data on early-type stars in general, and these data have proved to be extremely useful as standards of comparison for Be stars. Of the twelve spacecraft, two are presently operating: Copernicus and ANS. The two experiments complement one another very nicely in that the ANS experiment can obtain absolute continuous flux distributions, while the Princeton experiment can obtain high-resolution line spectra for the brighter Be stars.


2014 ◽  
Vol 10 (S305) ◽  
pp. 53-60 ◽  
Author(s):  
Jason H. Grunhut ◽  
Coralie Neiner

AbstractFor several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M> 8M⊙) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have furthered our understanding of the interactions between the magnetic field and stellar wind, as well as the consequences and connections of this interaction with other observed phenomena.


2012 ◽  
Vol 428 (4) ◽  
pp. 2789-2794 ◽  
Author(s):  
Jonathan Braithwaite ◽  
Matteo Cantiello

Sign in / Sign up

Export Citation Format

Share Document