scholarly journals Hydrodynamics of Young Binaries with Low-Mass Secondaries

2011 ◽  
Vol 7 (S282) ◽  
pp. 521-524
Author(s):  
Tatiana Demidova ◽  
Vladimir Grinin ◽  
Nataliya Sotnikova

AbstractThe model of a young star with a low-mass secondary component (q = M2/M1 ≤ 0.1) accreting matter from a circumbinary (CB) disc is considered. It is assumed that the orbit and the CB disc can be coplanar and non-coplanar. The model parameters were varied within the following ranges: the component mass ratio q ranged from 0.1 to 0.003, the eccentricity e varied from 0 to 0.7, the inclination of the orbit plane to the CB disc ranged from 0 to 10 degrees, and the parameter that defines the viscosity of the system was also varied. A number of hydrodynamics models of such a system have been calculated by the SPH method and then the variations of the circumstellar extinction and phase brightness curves were determined. The calculated brightness curves differ in shape and amplitude and it depends on the model parameters and the orientation of the system relative to the observer. The results were used to analyze the cyclic activity of UX Ori type stars.

1992 ◽  
Vol 151 ◽  
pp. 303-306
Author(s):  
M. Taghi Edalati ◽  
Timothy Banks ◽  
Edwin Budding

Wide and narrow Hα lightcurves of R CMa were analysed using Wilson-Devinney (WD) and Information Limit Optimisation Technique (ILOT) approaches. A range of mass ratios, tested by both methods, led to an optimal estimate of around 0.45, at variance with the spectroscopic value. The distortion on the light curve affects the modelling, and so, in a second fitting, this was represented by a ‘hot spot’, associated with mass transfer effects. A semi-detached configuration was then derived. This is supported by the form of the Hα index variation, which has also been modelled. Although thus appearing as a ‘classical Algol’ system, R CMa retains its inherent peculiarity of low mass ratio with low period, which cannot be reconciled with conservative evolution scenarios.


New Astronomy ◽  
2012 ◽  
Vol 17 (1) ◽  
pp. 46-49 ◽  
Author(s):  
B. Ulaş ◽  
B. Kalomeni ◽  
V. Keskin ◽  
O. Köse ◽  
K. Yakut

2006 ◽  
Vol 460 (1) ◽  
pp. 133-144 ◽  
Author(s):  
F. Damiani ◽  
G. Micela ◽  
S. Sciortino ◽  
N. Huélamo ◽  
A. Moitinho ◽  
...  

2021 ◽  
Vol 922 (2) ◽  
pp. 122
Author(s):  
Kai Li ◽  
Qi-Qi Xia ◽  
Chun-Hwey Kim ◽  
Shao-Ming Hu ◽  
Di-Fu Guo ◽  
...  

Abstract The cutoff mass ratio is under debate for contact binaries. In this paper, we present the investigation of two contact binaries with mass ratios close to the low mass ratio limit. It is found that the mass ratios of VSX J082700.8+462850 (hereafter J082700) and 1SWASP J132829.37+555246.1 (hereafter J132829) are both less than 0.1 (q ∼ 0.055 for J082700 and q ∼ 0.089 for J132829). J082700 is a shallow contact binary with a contact degree of ∼19%, and J132829 is a deep contact system with a fill-out factor of ∼70%. The O − C diagram analysis indicated that the two systems manifested long-term period decreases. In addition, J082700 exhibits a cyclic modulation which is more likely resulting from the Applegate mechanism. In order to explore the properties of extremely low mass ratio contact binaries (ELMRCBs), we carried out a statistical analysis on contact binaries with mass ratios of q ≲ 0.1 and discovered that the values of J spin/J orb of three systems are greater than 1/3. Two possible explanations can interpret this phenomenon. One explanation is that some physical processes, unknown to date, are not considered when Hut presented the dynamic stability criterion. The other explanation is that the dimensionless gyration radius (k) should be smaller than the value we used (k 2 = 0.06). We also found that the formation of ELMRCBs possibly has two channels. The study of evolutionary states of ELMRCBs reveals that their evolutionary states are similar with those of normal W UMa contact binaries.


2004 ◽  
Vol 191 ◽  
pp. 92-99
Author(s):  
L.F. Rodríguez

AbstractUsing high-resolution (~ 01), multi-epoch Very Large Array observations, we have detected orbital motions in several low-luminosity protobinary systems in the Taurus and ρ Ophiuchus molecular complexes. The masses obtained from Kepler’s third law are of the order of 0.5 to 2 M⊙, as expected for such low-mass protostars. The relatively large bolometric luminosities of these young systems corroborates the notion that protostars obtain most of their luminosity from accretion and not from nuclear reactions. In addition, in one of the sources studied (a multiple system in Taurus), a low-mass young star has shown a drastic change in its orbit after a close approach with another component of the system, presumed to be a double star. The large proper motion achieved by this low mass protostar (20 km s−1), suggests an ejection from the system.


1983 ◽  
Vol 72 ◽  
pp. 257-262
Author(s):  
H. Ritter

ABSTRACTIt is shown that the secondary components of cataclysmic binaries with orbital periods of less than ~10 hours are indistinguishable from ordinary low-mass main-sequence stars and that, therefore, they are essentially unevolved. On the other hand, it is shown that, depending on the mass ratio of the progenitor system, the secondary of a cataclysmic binary could be significantly evolved. The fact that nevertheless most of the observed secondaries are essentially unevolved can be accounted for by assuming that the probability distribution for the initial mass ratio is not strongly peaked towards unity mass ratio.


Sign in / Sign up

Export Citation Format

Share Document