scholarly journals Wave modes from the magnetorotational instability in accretion discs

2012 ◽  
Vol 8 (S290) ◽  
pp. 201-202
Author(s):  
Giuseppe Di Bernardo ◽  
Ulf Torkelsson

AbstractThe magnetorotational instability (MRI) is widely believed to be the source of turbulence in accretion discs. This turbulence is responsible for the anomalous angular momentum transport in accretion discs. The turbulence will affect other aspects of the dynamics of the disc as well, and we will concentrate on two such issues: a) what kind of oscillations can be excited by the turbulence itself, and b) how the turbulence is interacting with modes that have been excited by some other agent. This is of interest in understanding the quasi-periodic oscillations (QPOs) that have been observed in the X-ray light curves of accreting neutron star and black hole binaries. We carry out local three dimensional (3D) magnetohydrodynamic simulations of a keplerian differentially rotating accretion disc, using a shearing box configuration taking in account the effects of the vertical stratification.

Author(s):  
Mayur B Shende ◽  
Prashali Chauhan ◽  
Prasad Subramanian

Abstract The temporal behaviour of X-rays from some AGN and microquasars is thought to arise from the rapid collapse of the hot, inner parts of their accretion discs. The collapse can occur over the radial infall timescale of the inner accretion disc. However, estimates of this timescale are hindered by a lack of knowledge of the operative viscosity in the collisionless plasma comprising the inner disc. We use published simulation results for cosmic ray diffusion through turbulent magnetic fields to arrive at a viscosity prescription appropriate to hot accretion discs. We construct simplified disc models using this viscosity prescription and estimate disc collapse timescales for 3C 120, 3C 111, and GRS 1915+105. The Shakura-Sunyaev α parameter resulting from our model ranges from 0.02 to 0.08. Our inner disc collapse timescale estimates agree well with those of the observed X-ray dips. We find that the collapse timescale is most sensitive to the outer radius of the hot accretion disc.


1997 ◽  
Vol 163 ◽  
pp. 210-214
Author(s):  
Ulf Torkelsson ◽  
Axel Brandenburg ◽  
Åke Nordlund ◽  
Robert F. Stein

AbstractThe shearing box has rapidly become the accepted way to investigate turbulence in Keplerian shear flows. In this paper we discuss to what extent and in which way the outcome of the shearing box is affected by the adopted boundary conditions, and how the shearing box can be modified to capture more of the physics of an accretion disc. The original shearing box model is too symmetric to generate a net accretion flow, but the symmetry can be broken by including the main effects of the cylindrical geometry of the real disc. However the quantitative change in the resulting angular momentum transport is small.


2020 ◽  
Vol 494 (3) ◽  
pp. 4057-4068
Author(s):  
Mayukh Pahari ◽  
I M McHardy ◽  
Federico Vincentelli ◽  
Edward Cackett ◽  
Bradley M Peterson ◽  
...  

ABSTRACT Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220–1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝ λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negative X-ray offset of ∼0.38 d from the standard disc delay prediction.


2020 ◽  
Vol 495 (1) ◽  
pp. 1110-1121 ◽  
Author(s):  
E Massaro ◽  
F Capitanio ◽  
M Feroci ◽  
T Mineo ◽  
A Ardito ◽  
...  

ABSTRACT The microquasar GRS 1915+105 is known to exhibit a very variable X-ray emission on different time-scales and patterns. We propose a system of two ordinary differential equations, adapted from the Hindmarsh–Rose model, with two dynamical variables x(t), y(t), and an input constant parameter J0, to which we added a random white noise, whose solutions for the x(t) variable reproduce consistently the X-ray light curves of several variability classes as well as the development of low-frequency quasi-periodic oscillations (QPO). We show that changing only the value of J0, the system moves from stable to unstable solutions and the resulting light curves reproduce those of the quiescent classes like ϕ and χ, the δ class and the spiking ρ class. Moreover, we found that increasing the values of J0 the system induces high-frequency oscillations that evolve into QPO when it moves into another stable region. This system of differential equations gives then a unified view of the variability of GRS 1915+105 in term of transitions between stable and unstable states driven by a single input function J0. We also present the results of a stability analysis of the equilibrium points and some considerations on the existence of periodic solutions.


1994 ◽  
Vol 159 ◽  
pp. 380-380
Author(s):  
G. Matt ◽  
A.C. Fabian ◽  
R.R. Ross

The presence of iron lines and high energy excesses in the X-ray spectra of Seyfert galaxies has been firmly established by Ginga (e.g. Nandra & Pounds 1993 and references therein). These features are generally interpreted as signatures of the reprocessing of the primary X-rays by matter in the neighbourhood of the central black hole, probably distributed in an accretion disc (Lightman & White 1988, George & Fabian 1991, Matt, Perola & Piro 1991).


1991 ◽  
Vol 9 (2) ◽  
pp. 279-280
Author(s):  
J. Singh ◽  
P. C. Agrawal ◽  
M. V. K. Apparao ◽  
R. K. Manchanda ◽  
P. Vivekananda Rao ◽  
...  

AbstractFast photometric observations of a nova-like variable KR Aurigae and the intermediate polar BG CMi (3A0729+103) were made in the B and U bands during 1984–89 to study pulsations in them. The light curves of KR Aur show large amplitude quasi-periodic pulsations with periods in the range 500–800s which can be ascribed to inhomogeneities in the accretion disc. The light curves of the X-ray emitting intermediate polar BG CMi show variable amplitude pulsations with 913s period. From the times of maxima of the pulsations obtained from observations over the period 1984–1989, the pulsation period is derived to be 0.010572966 ± 8 days and the spin-up rate to be (−5.7 ± 0.5) × 10−11 ss−1. The spin-up rate is consistent with the pulsating source being a white dwarf and not a neutron star.


2020 ◽  
Vol 643 ◽  
pp. A31
Author(s):  
A. Kotrlová ◽  
E. Šrámková ◽  
G. Török ◽  
K. Goluchová ◽  
J. Horák ◽  
...  

We explore the influence of nongeodesic pressure forces present in an accretion disc on the frequencies of its axisymmetric and nonaxisymmetric epicyclic oscillation modes. We discuss its implications for models of high-frequency quasi-periodic oscillations (QPOs), which have been observed in the X-ray flux of accreting black holes (BHs) in the three Galactic microquasars, GRS 1915+105, GRO J1655−40, and XTE J1550−564. We focus on previously considered QPO models that deal with low-azimuthal-number epicyclic modes, |m| ≤ 2, and outline the consequences for the estimations of BH spin, a ∈ [0, 1]. For four out of six examined models, we find only small, rather insignificant changes compared to the geodesic case. For the other two models, on the other hand, there is a significant increase of the estimated upper limit on the spin. Regarding the falsifiability of the QPO models, we find that one particular model from the examined set is incompatible with the data. If the spectral spin estimates for the microquasars that point to a >  0.65 were fully confirmed, two more QPO models would be ruled out. Moreover, if two very different values of the spin, such as a ≈ 0.65 in GRO J1655−40 and a ≈ 1 in GRS 1915+105, were confirmed, all the models except one would remain unsupported by our results. Finally, we discuss the implications for a model that was recently proposed in the context of neutron star (NS) QPOs as a disc-oscillation-based modification of the relativistic precession model. This model provides overall better fits of the NS data and predicts more realistic values of the NS mass compared to the relativistic precession model. We conclude that it also implies a significantly higher upper limit on the microquasar’s BH spin (a ∼ 0.75 vs. a ∼ 0.55).


2020 ◽  
Vol 643 ◽  
pp. A171
Author(s):  
J.-M. Hameury ◽  
J.-P. Lasota

Context. It is now widely accepted that most ultraluminous X-ray sources (ULXs) are binary systems whose large (above 1039 erg s−1) apparent luminosities are explained by super-Eddington accretion onto a stellar-mass compact object. Many of the ULXs, especially those containing magnetized neutron stars, are highly variable; some exhibit transient behaviour. Large luminosities might imply large accretion discs that could be therefore prone to the thermal–viscous instability known to drive outbursts of dwarf novae and low-mass X-ray binary transient sources. Aims. The aim of this paper is to extend and generalize the X-ray transient disc-instability model to the case of large (outer radius larger than 1012 cm) accretion discs and apply it to the description of systems with super-Eddington accretion rates at outburst and, in some cases, super-Eddington mass transfer rates. Methods. We have used our disc-instability-model code to calculate the time evolution of the accretion disc and the outburst properties. Results. We show that, provided that self-irradiation of the accretion disc is efficient even when the accretion rate exceeds the Eddington value, possibly due to scattering back of the X-ray flux emitted by the central parts of the disc on the outer portions of the disc, heating fronts can reach the disc’s outer edge generating high accretion rates. We also provide analytical approximations for the observable properties of the outbursts. We have successfully reproduced the observed properties of galactic transients with large discs, such as V404 Cyg, as well as some ULXs such as M51 XT-1. Our model can reproduce the peak luminosity and decay time of ESO 243-39 HLX-1 outbursts if the accretor is a neutron star. Conclusions. Observational tests of our predicted relations between the outburst duration and decay time with peak luminosity would be most welcome.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Shoji Kato ◽  
Mami Machida

Abstract A possible origin of kilohertz quasi-periodic oscillations (QPOs) in low-mass X-ray binaries is proposed. Recent numerical magnetohydrodynamic simulations of accretion disks with turbulent magnetic fields of magneto-rotational instability definitely show the presence of two-armed spiral structure in the quasi-steady state of accretion disks. In such deformed disks, two-armed ($m=2$) c-mode ($n=1$) oscillations are excited by wave–wave resonant instability. Among these excited oscillations, the fundamental in the radial direction ($n_{\rm r}=0$) will be the higher kHz QPO of twin QPOs, and the first overtone ($n_{\rm r}=1$) in the radial direction will be the lower kHz QPO of the twin. A possible cause of the twin high-frequency QPOs in black hole X-ray binaries is also discussed in the final section.


Sign in / Sign up

Export Citation Format

Share Document