scholarly journals Models of ultraluminous X-ray transient sources

2020 ◽  
Vol 643 ◽  
pp. A171
Author(s):  
J.-M. Hameury ◽  
J.-P. Lasota

Context. It is now widely accepted that most ultraluminous X-ray sources (ULXs) are binary systems whose large (above 1039 erg s−1) apparent luminosities are explained by super-Eddington accretion onto a stellar-mass compact object. Many of the ULXs, especially those containing magnetized neutron stars, are highly variable; some exhibit transient behaviour. Large luminosities might imply large accretion discs that could be therefore prone to the thermal–viscous instability known to drive outbursts of dwarf novae and low-mass X-ray binary transient sources. Aims. The aim of this paper is to extend and generalize the X-ray transient disc-instability model to the case of large (outer radius larger than 1012 cm) accretion discs and apply it to the description of systems with super-Eddington accretion rates at outburst and, in some cases, super-Eddington mass transfer rates. Methods. We have used our disc-instability-model code to calculate the time evolution of the accretion disc and the outburst properties. Results. We show that, provided that self-irradiation of the accretion disc is efficient even when the accretion rate exceeds the Eddington value, possibly due to scattering back of the X-ray flux emitted by the central parts of the disc on the outer portions of the disc, heating fronts can reach the disc’s outer edge generating high accretion rates. We also provide analytical approximations for the observable properties of the outbursts. We have successfully reproduced the observed properties of galactic transients with large discs, such as V404 Cyg, as well as some ULXs such as M51 XT-1. Our model can reproduce the peak luminosity and decay time of ESO 243-39 HLX-1 outbursts if the accretor is a neutron star. Conclusions. Observational tests of our predicted relations between the outburst duration and decay time with peak luminosity would be most welcome.

2004 ◽  
Vol 194 ◽  
pp. 204-204
Author(s):  
J. I. González-Hernández ◽  
R. Rebolo ◽  
G. Israelian ◽  
J. Casares

We have determined abundances in the secondary stars of the black hole X-ray binary A0620-00 and the neutron star Binary Cen X-4. These are K type stars veiled by the emission produced by the respective accretion discs. We searched for evidence of nucleosynthetic products from the progenitor of the compact object that could have contaminated the secondary stars (as in Israelian et al., 1999).Using high resolution spectra obtained with VLT/UVES, we have derived in a consistent way stellar parameters and the veiling caused by the accretion disc.


2019 ◽  
Vol 631 ◽  
pp. A135 ◽  
Author(s):  
L. Ducci ◽  
P. Romano ◽  
L. Ji ◽  
A. Santangelo

Supergiant fast X-ray transients (SFXTs) are X-ray binary systems with a supergiant companion and likely a neutron star, which show a fast (∼103 s) and high variability with a dynamic range up to 105−6. Given their extreme properties, they are considered among the most valuable laboratories to test accretion models. Recently, the orbital parameters of a member of this class, IGR J08408−4503, were obtained from optical observations. We used this information, together with X-ray observations from previous publications and new results from X-ray and optical data collected by INTEGRAL and presented in this work, to study the accretion mechanisms at work in IGR J08408−4503. We found that the high eccentricity of the compact object orbit and the large size of the donor star imply Roche lobe overflow (RLO) around the periastron. It is also likely that a fraction of the outer layers of the photosphere of the donor star are lost from the Lagrangian point L2 during the periastron passages. On the basis of these findings, we discuss the flaring variability of IGR J08408−4503 assuming the presence of an accretion disc. We point out that IGR J08408−4503 may not be the only SFXT with an accretion disc fueled by RLO. These findings open a new scenario for accretion mechanisms in SFXTs, since most of them have so far been based on the assumption of spherically symmetric accretion.


Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


2019 ◽  
Vol 486 (2) ◽  
pp. 2754-2765 ◽  
Author(s):  
A M Derdzinski ◽  
D D’Orazio ◽  
P Duffell ◽  
Z Haiman ◽  
A MacFadyen

Abstract The coalescence of a compact object with a $10^{4}\hbox{--}10^{7}\, {\rm M_\odot }$ supermassive black hole (SMBH) produces mHz gravitational waves (GWs) detectable by the future Laser Interferometer Space Antenna (LISA). If such an inspiral occurs in the accretion disc of an active galactic nucleus (AGN), the gas torques imprint a small deviation in the GW waveform. Here, we present two-dimensional hydrodynamical simulations with the moving-mesh code disco of a BH inspiraling at the GW rate in a binary system with a mass ratio q = M2/M1 = 10−3, embedded in an accretion disc. We assume a locally isothermal equation of state for the gas (with Mach number $\mathcal {M}=20$) and implement a standard α-prescription for its viscosity (with α = 0.03). We find disc torques on the binary that are weaker than in previous semi-analytic toy models, and are in the opposite direction: the gas disc slows down, rather than speeds up the inspiral. We compute the resulting deviations in the GW waveform, which scale linearly with the mass of the disc. The SNR of these deviations accumulates mostly at high frequencies, and becomes detectable in a 5 yr LISA observation if the total phase shift exceeds a few radians. We find that this occurs if the disc surface density exceeds $\Sigma _0 \gtrsim 10^{2-3}\rm g\, cm^{-2}$, as may be the case in thin discs with near-Eddington accretion rates. Since the characteristic imprint on the GW signal is strongly dependent on disc parameters, a LISA detection of an intermediate mass ratio inspiral would probe the physics of AGN discs and migration.


Author(s):  
Mayur B Shende ◽  
Prashali Chauhan ◽  
Prasad Subramanian

Abstract The temporal behaviour of X-rays from some AGN and microquasars is thought to arise from the rapid collapse of the hot, inner parts of their accretion discs. The collapse can occur over the radial infall timescale of the inner accretion disc. However, estimates of this timescale are hindered by a lack of knowledge of the operative viscosity in the collisionless plasma comprising the inner disc. We use published simulation results for cosmic ray diffusion through turbulent magnetic fields to arrive at a viscosity prescription appropriate to hot accretion discs. We construct simplified disc models using this viscosity prescription and estimate disc collapse timescales for 3C 120, 3C 111, and GRS 1915+105. The Shakura-Sunyaev α parameter resulting from our model ranges from 0.02 to 0.08. Our inner disc collapse timescale estimates agree well with those of the observed X-ray dips. We find that the collapse timescale is most sensitive to the outer radius of the hot accretion disc.


1974 ◽  
Vol 64 ◽  
pp. 194-212
Author(s):  
M. J. Rees

The physics of spherically symmetrical accretion onto a compact object is briefly reviewed. Neither neutron stars nor stellar-mass black holes are likely to be readily detectable if they are isolated and accreting from the interstellar medium. Supermassive black holes in intergalactic space may however be detectable. The effects of accretion onto compact objects in binary systems are then discussed, with reference to the phenomena observed in variable X-ray sources.


2019 ◽  
Vol 489 (1) ◽  
pp. 282-296 ◽  
Author(s):  
M J Middleton ◽  
P C Fragile ◽  
A Ingram ◽  
T P Roberts

ABSTRACT Identifying the compact object in ultraluminous X-ray sources (ULXs) has to date required detection of pulsations or a cyclotron resonance scattering feature (CRSF), indicating a magnetized neutron star. However, pulsations are observed to be transient and it is plausible that accretion on to the neutron star may have suppressed the surface magnetic field such that pulsations and CRSFs will be entirely absent. We may therefore lack direct means to identify neutron star systems whilst we presently lack an effective means by which to identify black hole ULXs. Here we present a possible method for separating the ULX population by assuming the X-ray, mHz quasi-periodic oscillations (QPOs), and day time-scale periods/QPOs are associated with Lense–Thirring precession of the inflow and outflowing wind, respectively. The precession time-scales combined with the temperature of the soft X-ray component produce planes where the accretor mass enters as a free parameter. Depending on the properties of the wind, use of these planes may be robust to a range in the angular momentum (spin) and, for high accretion rates, essentially independent of the neutron star’s surface dipole field strength. Our model also predicts the mHz QPO frequency and magnitude of the phase lag imprinted due to propagation through the optically thick wind; in the case of NGC 5408 X-1 we subsequently infer a black hole mass and moderate-to-high spin. Finally, we note that observing secular QPO evolution over sufficient baselines may indicate a neutron star, as the precession responds to spin-up which is not readily observable for black hole primaries.


1994 ◽  
Vol 159 ◽  
pp. 380-380
Author(s):  
G. Matt ◽  
A.C. Fabian ◽  
R.R. Ross

The presence of iron lines and high energy excesses in the X-ray spectra of Seyfert galaxies has been firmly established by Ginga (e.g. Nandra & Pounds 1993 and references therein). These features are generally interpreted as signatures of the reprocessing of the primary X-rays by matter in the neighbourhood of the central black hole, probably distributed in an accretion disc (Lightman & White 1988, George & Fabian 1991, Matt, Perola & Piro 1991).


2019 ◽  
Vol 622 ◽  
pp. L3 ◽  
Author(s):  
I. El Mellah ◽  
J. O. Sundqvist ◽  
R. Keppens

Ultraluminous X-ray sources (ULXs) have such high X-ray luminosities that they were long thought to be accreting intermediate-mass black holes. Yet, some ULXs have been shown to display periodic modulations and coherent pulsations suggestive of a neutron star in orbit around a stellar companion and accreting at super-Eddington rates. In this Letter, we propose that the mass transfer in ULXs could be qualitatively the same as in supergiant X-ray binaries (SgXBs), with a wind from the donor star highly beamed towards the compact object. Since the star does not fill its Roche lobe, this mass transfer mechanism known as “wind Roche lobe overflow” can remain stable even for large donor-star-to-accretor mass ratios. Based on realistic acceleration profiles derived from spectral observations and modeling of the stellar wind, we compute the bulk motion of the wind to evaluate the fraction of the stellar mass outflow entering the region of gravitational predominance of the compact object. The density enhancement towards the accretor leads to mass-transfer rates systematically much larger than the mass-accretion rates derived by the Bondi-Hoyle-Lyttleton formula. We identify orbital and stellar conditions for a SgXBs to transfer mass at rates necessary to reach the ULX luminosity level. These results indicate that Roche-lobe overflow is not the only way to funnel large quantities of material into the Roche lobe of the accretor. With the stellar mass-loss rates and parameters of M101 ULX-1 and NGC 7793 P13, wind Roche-lobe overflow can reproduce mass-transfer rates that qualify an object as an ULX.


Sign in / Sign up

Export Citation Format

Share Document