scholarly journals Molecular Clouds: Internal Properties, Turbulence, Star Formation and Feedback

2012 ◽  
Vol 8 (S292) ◽  
pp. 19-28 ◽  
Author(s):  
Jonathan C. Tan ◽  
Suzanne N. Shaske ◽  
Sven Van Loo

AbstractAll stars are born in molecular clouds, and most in giant molecular clouds (GMCs), which thus set the star formation activity of galaxies. We first review their observed properties, including measures of mass surface density, Σ, and thus mass,M. We discuss cloud dynamics, concluding most GMCs are gravitationally bound. Star formation is highly clustered within GMCs, but overall is very inefficient. We compare properties of star-forming clumps with those of young stellar clusters (YSCs). The high central densities of YSCs may result via dynamical evolution of already-formed stars during and after star cluster formation. We discuss theoretical models of GMC evolution, especially addressing how turbulence is maintained, and emphasizing the importance of GMC collisions. We describe how feedback limits total star formation efficiency, ε, in clumps. A turbulent and clumpy medium allows higher ε, permitting formation of bound clusters even when escape speeds are less than the ionized gas sound speed.

Author(s):  
Yingtian Chen ◽  
Hui Li ◽  
Mark Vogelsberger

Abstract We perform a suite of hydrodynamic simulations to investigate how initial density profiles of giant molecular clouds (GMCs) affect their subsequent evolution. We find that the star formation duration and integrated star formation efficiency of the whole clouds are not sensitive to the choice of different profiles but are mainly controlled by the interplay between gravitational collapse and stellar feedback. Despite this similarity, GMCs with different profiles show dramatically different modes of star formation. For shallower profiles, GMCs first fragment into many self-gravitation cores and form sub-clusters that distributed throughout the entire clouds. These sub-clusters are later assembled ‘hierarchically’ to central clusters. In contrast, for steeper profiles, a massive cluster is quickly formed at the center of the cloud and then gradually grows its mass via gas accretion. Consequently, central clusters that emerged from clouds with shallower profiles are less massive and show less rotation than those with the steeper profiles. This is because 1) a significant fraction of mass and angular momentum in shallower profiles is stored in the orbital motion of the sub-clusters that are not able to merge into the central clusters 2) frequent hierarchical mergers in the shallower profiles lead to further losses of mass and angular momentum via violent relaxation and tidal disruption. Encouragingly, the degree of cluster rotations in steeper profiles is consistent with recent observations of young and intermediate-age clusters. We speculate that rotating globular clusters are likely formed via an ‘accretion’ mode from centrally-concentrated clouds in the early Universe.


2018 ◽  
Vol 56 (1) ◽  
pp. 41-82 ◽  
Author(s):  
Frédérique Motte ◽  
Sylvain Bontemps ◽  
Fabien Louvet

This review examines the state-of-the-art knowledge of high-mass star and massive cluster formation, gained from ambitious observational surveys, which acknowledges the multiscale characteristics of these processes. After a brief overview of theoretical models and main open issues, we present observational searches for the evolutionary phases of high-mass star formation, first among high-luminosity sources and more recently among young massive protostars and the elusive high-mass prestellar cores. We then introduce the most likely evolutionary scenario for high-mass star formation, which emphasizes the link of high-mass star formation to massive cloud and cluster formation. Finally, we introduce the first attempts to search for variations of the star-formation activity and cluster formation in molecular cloud complexes in the most extreme star-forming sites and across the Milky Way. The combination of Galactic plane surveys and high–angular resolution images with submillimeter facilities such as Atacama Large Millimeter Array (ALMA) are prerequisites to make significant progress in the forthcoming decade.


2019 ◽  
Vol 71 (Supplement_1) ◽  
Author(s):  
Fumitaka Nakamura ◽  
Shun Ishii ◽  
Kazuhito Dobashi ◽  
Tomomi Shimoikura ◽  
Yoshito Shimajiri ◽  
...  

Abstract We carried out mapping observations toward three nearby molecular clouds, Orion A, Aquila Rift, and M 17, using a new 100 GHz receiver, FOREST, on the Nobeyama 45 m telescope. We describe the details of the data obtained such as intensity calibration, data sensitivity, angular resolution, and velocity resolution. Each target contains at least one high-mass star-forming region. The target molecular lines were 12CO (J = 1–0), 13CO (J = 1–0), C18O (J = 1–0), N2H+ (J = 1–0), and CCS (JN = 87–76), with which we covered the density range of 102 cm−3 to 106 cm−3 with an angular resolution of ∼20″ and a velocity resolution of ∼0.1 km s−1. Assuming the representative distances of 414 pc, 436 pc, and 2.1 kpc, the maps of Orion A, Aquila Rift, and M17 cover most of the densest parts with areas of about 7 pc × 15 pc, 7 pc × 7 pc, and 36 pc × 18 pc, respectively. On the basis of the 13CO column density distribution, the total molecular masses are derived to be $3.86 \times 10^{4}\, M_\odot$, $2.67 \times 10^{4}\, M_{\odot }$, and $8.1\times 10^{5}\, M_{\odot }$ for Orion A, Aquila Rift, and M17, respectively. For all the clouds, the H2 column density exceeds the theoretical threshold for high-mass star formation of ≳ 1 g cm−2 only toward the regions which contain current high-mass star-forming sites. For other areas, further mass accretion or dynamical compression would be necessary for future high-mass star formation. This is consistent with the current star formation activity. Using the 12CO data, we demonstrate that our data have enough capability to identify molecular outflows, and for the Aquila Rift we identify four new outflow candidates. The scientific results will be discussed in detail in separate papers.


2020 ◽  
Vol 495 (3) ◽  
pp. 2682-2712
Author(s):  
Selçuk Topal

ABSTRACT Molecular emission lines are essential tools to shed light on many questions regarding star formation in galaxies. Multiple molecular lines are particularly useful to probe different phases of star-forming molecular clouds. In this study, we investigate the physical properties of giant molecular clouds (GMCs) using multiple lines of CO, i.e. CO(1–0, 2–1, 3–2) and 13CO(1–0), obtained at selected 20 positions in the disc of NGC 0628. A total of 11 positions were selected over the radial cut, including the centre, and remaining 9 positions were selected across the southern and northern arms of the galaxy. A total of 13 out of 20 positions are brighter at $24\, \mu {\rm m}$ and ultraviolet (UV) emission and hosting significantly more H ii regions compared to the rest of the positions indicating opposite characteristics. Our line ratio analysis shows that the gas gets warmer and thinner as a function of radius from the galaxy centre up to 1.7 kpc, and then the ratios start to fluctuate. Our empirical and model results suggest that the UV-bright positions have colder and thinner CO gas with higher hydrogen and CO column densities. However, the UV-dim positions have relatively warmer CO gas with lower densities bathed in GMCs surrounded by less number of H ii regions. Analysis of multiwavelength infrared and UV data indicates that the UV-bright positions have higher star formation efficiency than that of the UV-dim positions.


1991 ◽  
Vol 147 ◽  
pp. 443-444
Author(s):  
C. Koempe ◽  
G. Joncas ◽  
J.G.A. Wouterloot ◽  
H. Meyerdierks

By now, it is well established that massive stars form in giant molecular clouds. Numerous studies have shown that star formation, instead of being spread uniformly throughout molecular clouds, occurs in dense condensations located within these clouds. The physical conditions in these condensations are therefore critical input parameters for any theory of star formation.


2002 ◽  
Vol 207 ◽  
pp. 499-504
Author(s):  
Mónica Rubio

We will review the present knowledge of molecular cloud properties and its relation to star formation. We will discuss the evidence for cluster formation associated with giant molecular clouds, and will concentrate on recent results in our Galaxy and the Magellanic Clouds.


2019 ◽  
Vol 57 (1) ◽  
pp. 227-303 ◽  
Author(s):  
Mark R. Krumholz ◽  
Christopher F. McKee ◽  
Joss Bland-Hawthorn

Star clusters stand at the intersection of much of modern astrophysics: the ISM, gravitational dynamics, stellar evolution, and cosmology. Here, we review observations and theoretical models for the formation, evolution, and eventual disruption of star clusters. Current literature suggests a picture of this life cycle including the following several phases: ▪ Clusters form in hierarchically structured, accreting molecular clouds that convert gas into stars at a low rate per dynamical time until feedback disperses the gas. ▪ The densest parts of the hierarchy resist gas removal long enough to reach high star-formation efficiency, becoming dynamically relaxed and well mixed. These remain bound after gas removal. ▪ In the first ∼100 Myr after gas removal, clusters disperse moderately fast, through a combination of mass loss and tidal shocks by dense molecular structures in the star-forming environment. ▪ After ∼100 Myr, clusters lose mass via two-body relaxation and shocks by giant molecular clouds, processes that preferentially affect low-mass clusters and cause a turnover in the cluster mass function to appear on ∼1–10-Gyr timescales. ▪ Even after dispersal, some clusters remain coherent and thus detectable in chemical or action space for multiple galactic orbits. In the next decade, a new generation of space– and adaptive optics–assisted ground-based telescopes will enable us to test and refine this picture.


2002 ◽  
Vol 12 ◽  
pp. 140-142
Author(s):  
Jonathan Williams

AbstractMassive stars form in clusters within self-gravitating molecular clouds. The size scale of these clusters is sufficiently large that non-thermal, or turbulent, motions of the gas must be taken into account when considering their formation. Millimeter wavelength radio observations of the gas and dust in these clouds reveal a complex, self-similar structure that reflects the turbulent nature of the gas. Differences are seen, however, towards dense bound cores in proto-clusters. Examination of the kinematics of gas around such cores suggests that dissipation of turbulence may be the first step in the star formation process. Newly formed stars, on the other hand, replenish turbulence through their winds and outflows. In this way, star formation may be self-regulated. Observations and simulations are beginning to demonstrate the key role that cloud turbulence plays in the formation and evolution of stellar groups.


2019 ◽  
Vol 631 ◽  
pp. L1 ◽  
Author(s):  
Julien Montillaud ◽  
Mika Juvela ◽  
Charlotte Vastel ◽  
Jinhua He ◽  
Tie Liu ◽  
...  

Context. Current theories and models attempt to explain star formation globally, from core scales to giant molecular cloud scales. A multi-scale observational characterisation of an entire molecular complex is necessary to constrain them. We investigate star formation in G202.3+2.5, a ∼10 × 3 pc sub-region of the Monoceros OB1 cloud with a complex morphology that harbours interconnected filamentary structures. Aims. We aim to connect the evolution of cores and filaments in G202.3+2.5 with the global evolution of the cloud and to identify the engines of the cloud dynamics. Methods. In this first paper, the star formation activity is evaluated by surveying the distributions of dense cores and protostars and their evolutionary state, as characterised using both infrared observations from the Herschel and WISE telescopes and molecular line observations with the IRAM 30 m telescope. Results. We find ongoing star formation in the whole cloud, with a local peak in star formation activity around the centre of G202.3+2.5, where a chain of massive cores (10 − 50 M⊙) forms a massive ridge (≳150 M⊙). All evolutionary stages from starless cores to Class II protostars are found in G202.3+2.5, including a possibly starless and massive (52 M⊙) core, which presents a high column density (8 × 1022 cm−2). Conclusions. All the core-scale observables we examined point to an enhanced star formation activity that is centred on the junction between the three main branches of the ramified structure of G202.3+2.5. This suggests that the increased star formation activity results from the convergence of these branches. To further investigate the origin of this enhancement, it is now necessary to extend the analysis to larger scales in order to examine the relationship between cores, filaments, and their environment. We address these points through the analysis of the dynamics of G202.3+2.5 in a joint paper.


2020 ◽  
Vol 493 (4) ◽  
pp. 5045-5061 ◽  
Author(s):  
Fumiya Maeda ◽  
Kouji Ohta ◽  
Yusuke Fujimoto ◽  
Asao Habe

ABSTRACT Star formation activity depends on galactic-scale environments. To understand the variations in star formation activity, comparing the properties of giant molecular clouds (GMCs) among environments with different star formation efficiency (SFE) is necessary. We thus focus on a strongly barred galaxy to investigate the impact of the galactic environment on the GMC properties, because the SFE is clearly lower in bar regions than in arm regions. In this paper, we present the 12CO(1 − 0) observations towards the western bar, arm, and bar-end regions of the strongly barred galaxy NGC 1300 with ALMA 12-m array at a high angular resolution of ∼40 pc. We detected GMCs associated with the dark lanes not only in the arm and bar-end regions but also in the bar region, where massive star formation is not seen. Using the CPROPS algorithm, we identified and characterized 233 GMCs across the observed regions. Based on the Kolmogorov–Smirnov test, we find that there is virtually no significant variations in GMC properties (e.g. radius, velocity dispersion, molecular gas mass, and virial parameter) among the bar, arm, and bar-end region. These results suggest that systematic differences in the physical properties of the GMCs are not the cause for SFE differences with environments, and that there should be other mechanisms which control the SFE of the GMCs such as fast cloud–cloud collisions in NGC 1300.


Sign in / Sign up

Export Citation Format

Share Document