scholarly journals First Census of Galactic Molecular Clouds

2012 ◽  
Vol 8 (S292) ◽  
pp. 104-104
Author(s):  
Alisher S. Hojaev ◽  
Anna A. Kovaleva ◽  
Nigina R. Alimova

AbstractThe first attempt at a census of all molecular clouds (MoC) in the Milky Way observed to date is presented. The catalog of MoC includes all observed and estimated physical parameters. The data will be used to compute a model of the MoC system in the Galaxy.

1984 ◽  
Vol 108 ◽  
pp. 399-400
Author(s):  
M. Rubio ◽  
R. Cohen ◽  
J. Montani

The dwarf Magellanic irregular galaxies apparently have a very low molecular content compared to the Milky Way. In the LMC, molecular clouds are fairly common, but the ratio of molecular to atomic gas is at least 5 times lower than in the Galaxy (Cohen et al. 1984). Elmegreen et al. (1980) searched for CO in 6 dwarf galaxies and failed to detect any emission even though their sensitivity was adequate to detect galactic giant molecular clouds placed at the distance of these galaxies. Israel (1984) observed the J=2→1 transition of CO at 15 points in the Small Magellanic Cloud and detected CO emission from five of them, but at a level two to six times lower than typical galactic values.


2021 ◽  
Vol 257 (2) ◽  
pp. 51
Author(s):  
Lixia Yuan ◽  
Ji Yang ◽  
Fujun Du ◽  
Xunchuan Liu ◽  
Shaobo Zhang ◽  
...  

Abstract We attempt to visually classify the morphologies of 18,190 molecular clouds, which are identified in the 12CO(1–0) spectral line data over ∼450 deg2 of the second Galactic quadrant from the Milky Way Imaging Scroll Painting project. Using the velocity-integrated intensity maps of the 12CO(1–0) emission, molecular clouds are first divided into unresolved and resolved ones. The resolved clouds are further classified as nonfilaments or filaments. Among the 18,190 molecular clouds, ∼25% are unresolved, ∼64% are nonfilaments, and ∼11% are filaments. In the terms of the integrated flux of 12CO(1–0) spectra of all 18,190 molecular clouds, ∼90% are from filaments, ∼9% are from nonfilaments, and the remaining ∼1% are from unresolved sources. Although nonfilaments are dominant in the number of the discrete molecular clouds, filaments are the main contributor of 12CO emission flux. We also present the number distributions of the physical parameters of the molecular clouds in our catalog, including their angular sizes, velocity spans, peak intensities of 12CO(1–0) emission, and 12CO(1–0) total fluxes. We find that there is a systematic difference between the angular sizes of the nonfilaments and filaments, with the filaments tending to have larger angular scales. The H2 column densities of them are not significantly different. We also discuss the observational effects, such as those induced by the finite spatial resolution, beam dilution, and line-of-sight projection, on the morphological classification of molecular clouds in our sample.


2004 ◽  
Vol 21 (2) ◽  
pp. 207-211 ◽  
Author(s):  
Timothy C. Beers ◽  
Carlos Allende Prieto ◽  
Ronald Wilhelm ◽  
Brian Yanny ◽  
Heidi Newberg

AbstractAlthough the Sloan Digital Sky Survey (SDSS) was primarily envisioned as a tool for understanding the nature of the ‘high redshift’ universe, significant discoveries have already been made at lower redshift, z ∼ 0, through studies of stars in the Milky Way galaxy. We have begun to explore the nature of the Milky Way by detailed investigation of the publicly accessible SDSS archive, using spectroscopically targeted stars of special interest (e.g. field horizontal-branch stars, carbon-enhanced stars, and F- and G-type turnoff stars), as well as the stars originally selected as photometric and reddening standards. The first step is to use the SDSS data (which includes independently calibrated five-band photometry and spectrophotometry of individual stars) to derive reliable estimates of the stellar physical parameters, such as Teff, log g, and [Fe/H], for stars that have been observed to date. Of particular interest, at present, are the stars that are apparently associated with the Monoceros Stream (also known as the SDSS ‘Ring around the Galaxy’), for which we report derived metallicities. The techniques we have developed for derivation of the physical parameters for these stars are presently being applied to other stars in the SDSS database, including the Early Data Release (EDR), as well as the first official public database, DR-1. Here we report on the progress made to date, and comment on what might be explored in the near future from a dedicated extension of the SDSS survey (SEGUE) that specifically targets stars in the Milky Way.


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


2020 ◽  
Vol 496 (1) ◽  
pp. 638-648 ◽  
Author(s):  
Timo L R Halbesma ◽  
Robert J J Grand ◽  
Facundo A Gómez ◽  
Federico Marinacci ◽  
Rüdiger Pakmor ◽  
...  

ABSTRACT We investigate whether the galaxy and star formation model used for the Auriga simulations can produce a realistic globular cluster (GC) population. We compare statistics of GC candidate star particles in the Auriga haloes with catalogues of the Milky Way (MW) and Andromeda (M31) GC populations. We find that the Auriga simulations do produce sufficient stellar mass for GC candidates at radii and metallicities that are typical for the MW GC system (GCS). We also find varying mass ratios of the simulated GC candidates relative to the observed mass in the MW and M31 GCSs for different bins of galactocentric radius metallicity (rgal–[Fe/H]). Overall, the Auriga simulations produce GC candidates with higher metallicities than the MW and M31 GCS and they are found at larger radii than observed. The Auriga simulations would require bound cluster formation efficiencies higher than 10 per cent for the metal-poor GC candidates, and those within the Solar radius should experience negligible destruction rates to be consistent with observations. GC candidates in the outer halo, on the other hand, should either have low formation efficiencies, or experience high mass-loss for the Auriga simulations to produce a GCS that is consistent with that of the MW or M31. Finally, the scatter in the metallicity as well as in the radial distribution between different Auriga runs is considerably smaller than the differences between that of the MW and M31 GCSs. The Auriga model is unlikely to give rise to a GCS that can be consistent with both galaxies.


2021 ◽  
Vol 31 (1) ◽  
pp. 1-44
Author(s):  
Andreas Eckart

AbstractWe study to what extent the Milky Way was used as an orientation tool at the beginning of the Islamic period covering the 8th to the 15th century, with a focus on the first half of that era. We compare the texts of three authors from three different periods and give detailed comments on their astronomical and traditional content. The text of al-Marzūqī summarises the information on the Milky Way put forward by the astronomer and geographer ʾAbū Ḥanīfa al-Dīnawarī. The text makes it clear that in some areas the Milky Way could be used as a geographical guide to determine the approximate direction toward a region on Earth or the direction of prayer. In the 15th century, the famous navigator Aḥmad b. Māǧid describes the Milky Way in his nautical instructions. He frequently demonstrates that the Milky Way serves as a guidance aid to find constellations and stars that are useful for precise navigation on land and at sea. On the other hand, Ibn Qutayba quotes in his description of the Milky Way a saying from the famous Bedouin poet Ḏū al-Rumma, which is also mentioned by al-Marzūqī. In this saying the Milky Way is used to indicate the hot summer times in which travelling the desert was particularly difficult. Hence, the Milky Way was useful for orientation in space and time and was used for agricultural and navigational purposes.


2020 ◽  
Vol 500 (2) ◽  
pp. 2514-2524
Author(s):  
Joel Pfeffer ◽  
Carmela Lardo ◽  
Nate Bastian ◽  
Sara Saracino ◽  
Sebastian Kamann

ABSTRACT A number of the massive clusters in the halo, bulge, and disc of the Galaxy are not genuine globular clusters (GCs) but instead are different beasts altogether. They are the remnant nuclear star clusters (NSCs) of ancient galaxies since accreted by the Milky Way. While some clusters are readily identifiable as NSCs and can be readily traced back to their host galaxy (e.g. M54 and the Sagittarius Dwarf galaxy), others have proven more elusive. Here, we combine a number of independent constraints, focusing on their internal abundances and overall kinematics, to find NSCs accreted by the Galaxy and trace them to their accretion event. We find that the true NSCs accreted by the Galaxy are: M54 from the Sagittarius Dwarf, ω Centari from Gaia-Enceladus/Sausage, NGC 6273 from Kraken, and (potentially) NGC 6934 from the Helmi Streams. These NSCs are prime candidates for searches of intermediate-mass black holes (BHs) within star clusters, given the common occurrence of galaxies hosting both NSCs and central massive BHs. No NSC appears to be associated with Sequoia or other minor accretion events. Other claimed NSCs are shown not to be such. We also discuss the peculiar case of Terzan 5, which may represent a unique case of a cluster–cluster merger.


1983 ◽  
Vol 100 ◽  
pp. 133-134
Author(s):  
Frank N. Bash

Bash and Peters (1976) suggested that giant molecular clouds (GMC's) can be viewed as ballistic particles launched from the two-armed spiral-shock (TASS) wave with orbits influenced only by the overall galactic gravitational potential perturbed by the spiral gravitational potential in the arms. For GMC's in the Milky Way, the model predicts that the radial velocity observed from the Sun increases with age (time since launch). We showed that the terminal velocity of CO observed from l ≃ 30° to l ≃ 60° can be understood if all GMC's are born in the spiral pattern given by Yuan (1969) and live 30 × 106 yrs. Older GMC's were predicted to have radial velocities which exceed observed terminal velocities.


2020 ◽  
Vol 500 (2) ◽  
pp. 2278-2288
Author(s):  
Claudio Grimaldi

ABSTRACT Probabilistic arguments about the existence of technological life beyond Earth traditionally refer to the Drake equation to draw possible estimates of the number of technologically advanced civilizations releasing, either intentionally or not, electromagnetic emissions in the Milky Way. Here, we introduce other indicators than Drake’s number ND to develop a demography of artificial emissions populating the Galaxy. We focus on three main categories of statistically independent signals (isotropic, narrow beams, and rotating beacons) to calculate the average number NG of emission processes present in the Galaxy and the average number of them crossing Earth, $\bar{k}$, which is a quantity amenable to statistical estimation from direct observations. We show that $\bar{k}$ coincides with ND only for isotropic emissions, while $\bar{k}$ can be orders of magnitude smaller than ND in the case of highly directional signals. We further show that while ND gives the number of emissions being released at the present time, NG considers also the signals from no longer active emitters but whose emissions still occupy the Galaxy. We find that as long as the average longevity of the emissions is shorter than about 105 yr, NG is fully determined by the rate of emissions alone, in contrast to ND and $\bar{k}$ which depend also on the emission longevity. Finally, using analytic formulas of NG, ND, and $\bar{k}$ determined for each type of emission processes here considered, we provide a comprehensive overview of the values these quantities can possibly achieve as functions of the emission birthrates, longevities, and directionality.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Xiang Cai ◽  
Jonathan H. Jiang ◽  
Kristen A. Fahy ◽  
Yuk L. Yung

In the field of astrobiology, the precise location, prevalence, and age of potential extraterrestrial intelligence (ETI) have not been explicitly explored. Here, we address these inquiries using an empirical galactic simulation model to analyze the spatial–temporal variations and the prevalence of potential ETI within the Galaxy. This model estimates the occurrence of ETI, providing guidance on where to look for intelligent life in the Search for ETI (SETI) with a set of criteria, including well-established astrophysical properties of the Milky Way. Further, typically overlooked factors such as the process of abiogenesis, different evolutionary timescales, and potential self-annihilation are incorporated to explore the growth propensity of ETI. We examine three major parameters: (1) the likelihood rate of abiogenesis (λA); (2) evolutionary timescales (Tevo); and (3) probability of self-annihilation of complex life (Pann). We found Pann to be the most influential parameter determining the quantity and age of galactic intelligent life. Our model simulation also identified a peak location for ETI at an annular region approximately 4 kpc from the galactic center around 8 billion years (Gyrs), with complex life decreasing temporally and spatially from the peak point, asserting a high likelihood of intelligent life in the galactic inner disk. The simulated age distributions also suggest that most of the intelligent life in our galaxy are young, thus making observation or detection difficult.


Sign in / Sign up

Export Citation Format

Share Document