scholarly journals Characterization of peculiar early-type galaxies in the local universe

2012 ◽  
Vol 10 (H16) ◽  
pp. 333-333
Author(s):  
Beatriz H. F. Ramos ◽  
Karín Menéndez-Delmestre ◽  
Taehyun Kim ◽  
Kartik Sheth ◽  

AbstractEarly-type galaxies (ETGs) have been characterized as objects dominated by old stellar populations, containing little or no cold gas and dust, and thus, non-existent star formation. However, there are indications in the literature that some ETGs deviate from this: some have significant amounts of gas and dust, are forming stars, and/or display stellar substructures (tidal features, disks or shells, e.g., Kormendy et al. 1997, Rix, Carollo & Freeman 1999). A better understanding of the evolution of ETGs and the details of their “peculiarities” is critical to properly constrain models of galaxy formation. We present preliminary results on a photometric analysis of substructures in local ETGs, based on 3.6μm IRAC images from the Spitzer Survey of Stellar Structure in Galaxies (S4G; Sheth et al. 2010), which comprises one of the largest mid-IR photometric surveys of the local Universe. Relatively unhindered by extinction and dominated by the low-mass stellar populations that dominate a galaxy's stellar mass budget, the IR is the ideal waveband to trace the details of stellar structures in galaxies. Based on 2D GALFIT (Peng et al. 2002) decomposition, we find tidal features in 17% of 146 ETGs from S4G. For both the GALFIT model and the galaxy residual images, we calculate the total counts inside an annular region centered on the galaxy, where the inner radius is the effective radius of the galaxy. Assuming that a tidal feature and its host galaxy have the same mass-to-luminosity ratio (M/L), the ratio of the residual counts over model counts translates into the ratio of their stellar masses. We find that the tidal features in the majority of peculiar ETGs in our sample account for no more than 11% of the galaxy's total stellar mass. Considering that simulations (Canalizo et al. 2007) suggest an upper limit in relative stellar mass of 25% for shells resulting from a past major merger, the values we find support a merger origin. We are in the process of applying the decomposition method to GALEX UV images and optical SDSS images of these peculiar ETGs in order to characterize the underlying substructure and provide constraints on astrophysical properties such as star formation rates and stellar masses associated to these tidal features, based on broad-band SED template fitting techniques.

2020 ◽  
Vol 493 (4) ◽  
pp. 5596-5605 ◽  
Author(s):  
Robin H W Cook ◽  
Luca Cortese ◽  
Barbara Catinella ◽  
Aaron Robotham

ABSTRACT We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the sSFR–M⋆ relation flattens by ∼0.1 dex per decade in M⋆ when re-normalizing specifice star formation rate (sSFR) by disc stellar mass instead of total stellar mass. However, recasting the sSFR–M⋆ relation into the framework of only disc-specific quantities shows that a residual trend remains against disc stellar mass with equivalent slope and comparable scatter to that of the total galaxy relation. This suggests that the residual declining slope of the SFMS is intrinsic to the disc components of galaxies. We further investigate the distribution of bulge-to-total ratios (B/T) as a function of distance from the SFMS (ΔSFRMS). At all stellar masses, the average B/T of local galaxies decreases monotonically with increasing ΔSFRMS. Contrary to previous works, we find that the upper envelope of the SFMS is not dominated by objects with a significant bulge component. This rules out a scenario in which, in the local Universe, objects with increased star formation activity are simultaneously experiencing a significant bulge growth. We suggest that much of the discrepancies between different works studying the role of bulges originate from differences in the methodology of structurally decomposing galaxies.


2018 ◽  
Vol 618 ◽  
pp. A31 ◽  
Author(s):  
V. A. Masoura ◽  
G. Mountrichas ◽  
I. Georgantopoulos ◽  
A. Ruiz ◽  
G. Magdis ◽  
...  

There is growing evidence supporting the coeval growth of galaxies and their resident super-massive black hole (SMBH). Most studies also claim a correlation between the activity of the SMBH and the star formation of the host galaxy. It is unclear, however, whether this correlation extends to all redshifts and X-ray luminosities. Some studies find a weaker dependence at lower luminosities and/or a suppression of the star formation at high luminosities. We here use data from the X-ATLAS and XMM-XXL North fields and compile the largest X-ray sample up to date to investigate how X-ray selected AGN affect the star formation of their host galaxies in a wide redshift and luminosity baseline of 0.03 < z < 3 and log LX(2−10 keV) = (41−45.5) erg s−1. Our sample consists of 3336 AGN. 1872 of our sources have spectroscopic redshifts. For the remaining sources we calculate photometric redshifts using TPZ, a machine-learning algorithm. We estimate stellar masses (M⋆) and star formation rates (SFRs) by applying spectral energy distribution fitting through the CIGALE code, using optical, near-IR, and mid-IR photometry (SDSS, VISTA, and WISE). Of our sources, 608 also have far-IR photometry (Herschel). We use these sources to calibrate the SFR calculations of our remaining X-ray sample. Our results show a correlation between the X-ray luminosity (LX) and the SFR of the host galaxy at all redshifts and luminosities spanned by our sample. We also find a dependence of the specific SFR (sSFR) on redshift, while there are indications that the X-ray luminosity enhances the sSFR even at low redshifts. We then disentangle the effects of stellar mass and redshift on the SFR and again study its dependence on the X-ray luminosity. Towards this end, we estimate the SFR of main-sequence galaxies that have the same stellar mass and redshift as our X-ray AGN and compare them with the SFR of our X-ray AGN. Our analysis reveals that the AGN enhances the star formation of its host galaxy when the galaxy lies below the main sequence and quenches the star formation of the galaxy it lives in when the host lies above the main sequence. Therefore, the effect of AGN on the SFR of the host galaxy depends on the location of the galaxy relative to the main sequence.


2020 ◽  
Vol 492 (4) ◽  
pp. 4768-4779 ◽  
Author(s):  
J-G Ducoin ◽  
D Corre ◽  
N Leroy ◽  
E Le Floch

ABSTRACT We present a new strategy to optimize the electromagnetic follow-up of gravitational wave triggers. This method is based on the widely used galaxy targeting approach where we add the stellar mass of galaxies in order to prioritize the more massive galaxies. We cross-matched the Galaxy List for the Advanced Detector Era (GLADE) galaxy catalogue with the AllWISE catalogue up to 400 Mpc with an efficiency of ∼93 per cent, and derived stellar masses using a mass-to-light ratio using the WISE1 band luminosity. We developed a new grade to rank galaxies combining their 3D localization probability associated with the gravitational wave event with the new stellar mass information. The efficiency of this new approach is illustrated with the GW170817 event, which shows that its host galaxy, NGC 4993, is ranked at the first place using this new method. The catalogue, named MANGROVE, is publicly available and the ranking of galaxies is automatically provided through a dedicated website for each gravitational wave event.


2019 ◽  
Vol 627 ◽  
pp. A53 ◽  
Author(s):  
B. Husemann ◽  
J. Scharwächter ◽  
T. A. Davis ◽  
M. Pérez-Torres ◽  
I. Smirnova-Pinchukova ◽  
...  

Context. Galaxy-wide outflows driven by star formation and/or an active galactic nucleus (AGN) are thought to play a crucial rule in the evolution of galaxies and the metal enrichment of the inter-galactic medium. Direct measurements of these processes are still scarce and new observations are needed to reveal the nature of outflows in the majority of the galaxy population. Aims. We combine extensive, spatially-resolved, multi-wavelength observations, taken as part of the Close AGN Reference Survey (CARS), for the edge-on disc galaxy HE 1353−1917 in order to characterise the impact of the AGN on its host galaxy via outflows and radiation. Methods. Multi-color broad-band photometry was combined with spatially-resolved optical, near-infrared (NIR) and sub-mm and radio observations taken with the Multi-Unit Spectroscopy Explorer (MUSE), the Near-infrared Integral Field Spectrometer (NIFS), the Atacama Large Millimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to map the physical properties and kinematics of the multi-phase interstellar medium. Results. We detect a biconical extended narrow-line region ionised by the luminous AGN orientated nearly parallel to the galaxy disc, extending out to at least 25 kpc. The extra-planar gas originates from galactic fountains initiated by star formation processes in the disc, rather than an AGN outflow, as shown by the kinematics and the metallicity of the gas. Nevertheless, a fast, multi-phase, AGN-driven outflow with speeds up to 1000 km s−1 is detected close to the nucleus at 1 kpc distance. A radio jet, in connection with the AGN radiation field, is likely responsible for driving the outflow as confirmed by the energetics and the spatial alignment of the jet and multi-phase outflow. Evidence for negative AGN feedback suppressing the star formation rate (SFR) is mild and restricted to the central kpc. But while any SFR suppression must have happened recently, the outflow has the potential to greatly impact the future evolution of the galaxy disc due to its geometrical orientation. Conclusions.. Our observations reveal that low-power radio jets can play a major role in driving fast, multi-phase, galaxy-scale outflows even in radio-quiet AGN. Since the outflow energetics for HE 1353−1917 are consistent with literature, scaling relation of AGN-driven outflows the contribution of radio jets as the driving mechanisms still needs to be systematically explored.


2006 ◽  
Vol 2 (S235) ◽  
pp. 399-399
Author(s):  
M. Doherty ◽  
A. J. Bunker ◽  
R. S. Ellis ◽  
P. J. McCarthy

AbstractSamples of Extremely Red Galaxies (ERGs) have generally been seen to comprise a mix of actively star-forming galaxies with significant dust reddening and evolved, passive galaxies, at redshifts about z ≈ 1 − 2. Initial results from deep Keck spectroscopy of ERGs (Doherty et al. 2005) revealed dominant old stellar populations in 75% of our spectroscopic sample, but only 28% have spectra with no evidence of recent star formation activity, such as would be expected for a strictly passively-evolving population. This study suggests that the bulk of the ERGs are luminous, spheroidal, evolved galaxies, but undergoing intermittent activity consistent with continued growth.Through a detailed investigation of individual galaxies in our sample we aim to address various outstanding questions. What fraction of their mass is produced in ongoing star formation? Is there a characteristic mass at which star formation is abruptly truncated? What mechanism provokes a secondary burst of star formation in evolved galaxies?We fit Bruzual & Charlot (2003; BC03) simple stellar population models to the broad band SEDs over a wide baseline, using a reduced χ2 minimisation, to investigate ages, stellar masses and star formation histories. The fits for the early types agree well with information in the spectra and return ages of 2–3 Gyr and masses in the range 1011–1012M⊙. The objects with recent star formation episodes are more complex. Some are fit well by continuous star formation models, accounting for the effects of dust. We are now in the process of exploring multi-population fits to investigate the effects of episodic bursts.Previous morphological studies of ERGs have revealed a diverse mix of galaxies – a combination of pure bulges, disks and a small fraction of irregular or interacting systems. We are curious to determine whether a morphological analysis produces results consistent with the spectroscopic properties of our sample. We are investigating a sub-sample of our galaxies which have HST imaging publically available. Initial results from a quantitative analysis using bulge/disk decomposition with GALFIT and GIM2D indicate that most galaxies with Early type spectra are bulge dominated. In contrast, a significant fraction of the galaxies showing spectroscopic signatures of on-going star formation on top of underlying old stellar populations appear to have a well-established classical spiral morphology, wih knots of star formation located in spiral arms around a central bulge. There is tenuous evidence (under further investigation) that at least half of the post-starbursts in our sample are barred spirals, lending support to theories relating post-starbursts to recent mergers.


2020 ◽  
Vol 644 ◽  
pp. A176
Author(s):  
M. Rigault ◽  
V. Brinnel ◽  
G. Aldering ◽  
P. Antilogus ◽  
C. Aragon ◽  
...  

As part of an on-going effort to identify, understand and correct for astrophysics biases in the standardization of Type Ia supernovae (SN Ia) for cosmology, we have statistically classified a large sample of nearby SNe Ia into those that are located in predominantly younger or older environments. This classification is based on the specific star formation rate measured within a projected distance of 1 kpc from each SN location (LsSFR). This is an important refinement compared to using the local star formation rate directly, as it provides a normalization for relative numbers of available SN progenitors and is more robust against extinction by dust. We find that the SNe Ia in predominantly younger environments are ΔY = 0.163 ± 0.029 mag (5.7σ) fainter than those in predominantly older environments after conventional light-curve standardization. This is the strongest standardized SN Ia brightness systematic connected to the host-galaxy environment measured to date. The well-established step in standardized brightnesses between SNe Ia in hosts with lower or higher total stellar masses is smaller, at ΔM = 0.119 ± 0.032 mag (4.5σ), for the same set of SNe Ia. When fit simultaneously, the environment-age offset remains very significant, with ΔY = 0.129 ± 0.032 mag (4.0σ), while the global stellar mass step is reduced to ΔM = 0.064  ±  0.029 mag (2.2σ). Thus, approximately 70% of the variance from the stellar mass step is due to an underlying dependence on environment-based progenitor age. Also, we verify that using the local star formation rate alone is not as powerful as LsSFR at sorting SNe Ia into brighter and fainter subsets. Standardization that only uses the SNe Ia in younger environments reduces the total dispersion from 0.142  ±  0.008 mag to 0.120  ±  0.010 mag. We show that as environment-ages evolve with redshift, a strong bias, especially on the measurement of the derivative of the dark energy equation of state, can develop. Fortunately, data that measure and correct for this effect using our local specific star formation rate indicator, are likely to be available for many next-generation SN Ia cosmology experiments.


2021 ◽  
Vol 163 (1) ◽  
pp. 28
Author(s):  
Yu-Zhong Wu

Abstract I assemble 4684 star-forming early-type galaxies (ETGs) and 2011 composite ETGs (located in the composite region on the BPT diagram) from the catalog of the Sloan Digital Sky Survey Data Release 7 MPA-JHU emission-line measurements. I compare the properties of both ETG samples and investigate their compositions, stellar masses, specific star formation rates (sSFRs), and excitation mechanisms. Compared with star-forming ETGs, composite ETGs have higher stellar mass and lower sSFR. In the stellar mass and u − r color diagram, more than 60% of star-forming ETGs and composite ETGs are located in the green valley, showing that the two ETG samples may have experienced star formation and that ∼17% of star-forming ETGs lie in the blue cloud, while ∼30% of composite ETGs lie in the red sequence. In the [N II]/Hα versus EWHα (the Hα equivalent width) diagram, all star-forming ETGs and most of the composite ETGs are located in the star-forming galaxy region, and composite ETGs have lower EWHα than their counterparts. We show the relations between 12+log(O/H) and log(N/O) for both ETG samples, and suggest that nitrogen production of some star-forming ETGs can be explained by the evolution scheme of Coziol et al., while the prodution of composite ETGs may be a consequence of the inflowing of metal-poor gas and these more evolved massive galaxies.


2012 ◽  
Vol 8 (S295) ◽  
pp. 151-154 ◽  
Author(s):  
Bianca M. Poggianti ◽  
Rosa Calvi ◽  
Daniele Bindoni ◽  
Mauro D'Onofrio ◽  
Alessia Moretti ◽  
...  

AbstractWe present a study of galaxy sizes in the local Universe as a function of galaxy environment, comparing clusters and the general field. Galaxies with radii and masses comparable to high-z massive and compact galaxies represent 4.4% of all galaxies more massive than 3 × 1010M⊙ in the field. Such galaxies are 3 times more frequent in clusters than in the field. Most of them are early-type galaxies with intermediate to old stellar populations. There is a trend of smaller radii for older luminosity-weighted ages at fixed galaxy mass. We show the relation between size and luminosity-weighted age for galaxies of different stellar masses and in different environments. We compare with high-z data to quantify the evolution of galaxy sizes. We find that, once the progenitor bias due to the relation between galaxy size and stellar age is removed, the average amount of size evolution of individual galaxies between high- and low-z is mild, of the order of a factor 1.6.


2019 ◽  
Vol 15 (S341) ◽  
pp. 104-108
Author(s):  
William J. Pearson ◽  
Lingyu Wang ◽  
James Trayford ◽  
Carlo E. Petrillo ◽  
Floris F. S. van der Tak

AbstractStarburst galaxies are often found to be the result of galaxy mergers. As a result, galaxy mergers are often believed to lie above the galaxy main sequence: the tight correlation between stellar mass and star formation rate. Here, we aim to test this claim.Deep learning techniques are applied to images from the Sloan Digital Sky Survey to provide visual-like classifications for over 340 000 objects between redshifts of 0.005 and 0.1. The aim of this classification is to split the galaxy population into merger and non-merger systems and we are currently achieving an accuracy of 92.5%. Stellar masses and star formation rates are also estimated using panchromatic data for the entire galaxy population. With these preliminary data, the mergers are placed onto the full galaxy main sequence, where we find that merging systems lie across the entire star formation rate - stellar mass plane.


2020 ◽  
Vol 495 (2) ◽  
pp. 2247-2264
Author(s):  
Evelyn J Johnston ◽  
Thomas H Puzia ◽  
Giuseppe D’Ago ◽  
Paul Eigenthaler ◽  
Gaspar Galaz ◽  
...  

ABSTRACT Clues to the formation and evolution of nuclear star clusters (NSCs) lie in their stellar populations. However, these structures are often very faint compared to their host galaxy, and spectroscopic analysis of NSCs is hampered by contamination of light from the rest of the system. With the introduction of wide-field integral field unit (IFU) spectrographs, new techniques have been developed to model the light from different components within galaxies, making it possible to cleanly extract the spectra of the NSCs and study their properties with minimal contamination from the light of the rest of the galaxy. This work presents the analysis of the NSCs in a sample of 12 dwarf galaxies in the Fornax Cluster observed with the Multi-Unit Spectroscopic Explorer (MUSE). Analysis of the stellar populations and star formation histories reveal that all the NSCs show evidence of multiple episodes of star formation, indicating that they have built up their mass further since their initial formation. The NSCs were found to have systematically lower metallicities than their host galaxies, which is consistent with a scenario for mass assembly through mergers with infalling globular clusters, whilst the presence of younger stellar populations and gas emission in the core of two galaxies is indicative of in-situ star formation. We conclude that the NSCs in these dwarf galaxies likely originated as globular clusters that migrated to the core of the galaxy that have built up their mass mainly through mergers with other infalling clusters, with gas-inflow leading to in-situ star formation playing a secondary role.


Sign in / Sign up

Export Citation Format

Share Document