scholarly journals Low-mass eclipsing binaries in the WFCAM Transit Survey

2016 ◽  
Vol 12 (S328) ◽  
pp. 124-126
Author(s):  
Patricia Cruz ◽  
Marcos Diaz ◽  
David Barrado ◽  
Jayne Birkby

AbstractThe characterization of short-period detached low-mass binaries, by the determination of their physical and orbital parameters, reveal the most precise basic parameters of low-mass stars. Particularly, when photometric and spectroscopic data of eclipsing binaries (EBs) are combined. Recently, 16 new low-mass EBs were discovered by the WFCAM Transit Survey (WTS), however, only three of them were fully characterized. Therefore, new spectroscopic data were already acquired with the objective to characterize five new detached low-mass EBs discovered in the WTS, with short periods between 0.59 and 1.72 days. A preliminary analysis of the radial velocity and light curves was performed, where we have derived orbital separations of 2.88 to 6.69 R⊙, and considering both components, we have found stellar radii ranging from 0.40 to 0.80 R⊙, and masses between 0.24 and 0.71 M⊙. In addition to the determination of the orbital parameters of these systems, the relation between mass, radius and orbital period of these objects can be investigated in order to study the mass-radius relationship and the radius anomaly in the low main-sequence.

2010 ◽  
Vol 6 (S276) ◽  
pp. 485-486
Author(s):  
Anne-Sophie Maurin ◽  
Franck Selsis ◽  
Franck Hersant ◽  
Marco Delbò

AbstractDuring the last few years, observations have yielded an abundant population of short-period planets under 15 Earth masses. Among those, hot terrestrial exoplanets represent a key population to study the survival of dense atmospheres close to their parent star. Thermal emission from exoplanets orbiting low-mass stars will be observable with the next generation of infrared telescopes, in particular the JWST. In order to constrain planetary and atmospheric properties, we have developed models to simulate the variation of the infrared emission along the path of the orbit (IR phase curve) for both airless planets and planets with dense atmospheres. Here, we focus on airless planets and present preliminary results on the influence of orbital elements, planet rotation, surface properties and observation geometry. Then, using simulated noisy phase curves, we test the retrieval of planets' properties and identify the degeneracies.


2006 ◽  
Vol 2 (S240) ◽  
pp. 628-630
Author(s):  
J.C. Morales ◽  
I. Ribas ◽  
C. Jordi ◽  
G. Torres ◽  
E.F. Guinan ◽  
...  

AbstractIn this work we have studied CM Draconis, one of the least massive eclipsing binaries known. Its components are very similar, with masses and radii of about 0.23 M⊙ and 0.25 R⊙. We have analysed light curves in the R and I bands to calculate the fundamental properties of this system with accuracies better than 1%. With these results we plan to carry out a thorough test of the models, which have been found to predict smaller radii and larger effective temperatures than observed for these low-mass stars. This will also be especially interesting in the case of CM Dra since the mechanism driving magnetic activity is thought to be different from that of more massive stars. In addition, the extended time-span of the observations has led to the detection of apsidal motion. This provides a further check on models through the determination of the internal structure of the stars.


1997 ◽  
Vol 189 ◽  
pp. 227-233
Author(s):  
I. Baraffe ◽  
F. Allard

Over the past decade considerable effort, both observational and theoretical, has been directed towards a more accurate determination of the stellar lower main sequence and of the sub-stellar domain covered by Brown Dwarfs and Planets. Astronomers have been looking for brown dwarfs for more than a decade, either with standard astronomical technics or with microlensing experiments. A breakthrough in the search for brown dwarfs was very recently achieved with the discovery of the first cool brown dwarf GL 229B (Nakajima et al. 1995). At the same epoch, the search for planets blossomed with the discovery of a Jupiter - mass companion of the star 51 Pegasi (Mayor and Queloz 199,5). Now, the number of faint, cool stars and substellar objects is rising rapidly.


2020 ◽  
Vol 498 (2) ◽  
pp. 2833-2844
Author(s):  
A Carmo ◽  
C E Ferreira Lopes ◽  
A Papageorgiou ◽  
F J Jablonski ◽  
C V Rodrigues ◽  
...  

ABSTRACT The discovery and characterization of Algol eclipsing binaries (EAs) provide an opportunity to contribute for a better picture of the structure and evolution of low-mass stars. However, the cadence of most current photometric surveys hinders the detection of EAs since the separation between observations is usually larger than the eclipse(s) duration and hence few measurements are found at the eclipses. Even when those objects are detected as variable, their periods can be missed if an appropriate oversampling factor is not used in the search tools. In this paper, we apply this approach to find the periods of stars catalogued in the Catalina Real-Time Transient Survey (CRTS) as EAs having unknown period (EAup). As a result, the periods of ${\sim} 56{\rm {per \, cent}}$ of them were determined. Eight objects were identified as low-mass binary systems and modelled with the Wilson & Devinney synthesis code combined with a Markov chain Monte Carlo optimization procedure. The computed masses and radii are in agreement with theoretical models and show no evidence of inflated radii. This paper is the first of a series aiming to identify suspected binary systems in large surveys.


2009 ◽  
Vol 26 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Warrick A. Lawson ◽  
Lisa A. Crause

AbstractWe present the results of a photometric survey for variability in ten X-ray-emitting low-mass stars in the Chamaeleon region. Eight of the stars we observed are bona fide pre-main-sequence members of the ∼2 Myr-old Chamaeleon I star-forming cloud. The other two stars are young with high levels of relative X-ray emission, but with discordant proper motions they are probable non-members of the cloud. In six of the stars we monitored, periodic variations on timescales of 2.5–11.5 d were detected, that we ascribe to stellar rotation and the presence of cool starspots. Two other stars, CHXR 20 and CHXR 85, show large amplitude variations at visual and near-infrared wavelengths and are candidate eclipsing binaries. Compared to the rotational properties of low-mass stars in the ≈8 Myr-old η Chamaeleontis cluster, we find that the older η Chamaeleontis stars have several times higher surface specific angular momentum than the younger Chamaeleon I stars. The apparent increase in angular momentum between ∼2 and 8 Myr might be due to changes in stellar internal structure as the stars evolve, or evidence for a different rotational history between members of the two star-forming regions.


Author(s):  
Simon J Murphy ◽  
Warrick A Lawson ◽  
Christopher A Onken ◽  
David Yong ◽  
Gary S Da Costa ◽  
...  

Abstract We present the characterization of CRTS J055255.7−004426 (=THOR 42), a young eclipsing binary comprising two pre-main sequence M dwarfs (combined spectral type M3.5). This nearby (103 pc), short-period (0.859 d) system was recently proposed as a member of the ∼24 Myr-old 32 Orionis Moving Group. Using ground- and space-based photometry in combination with medium- and high-resolution spectroscopy, we model the light and radial velocity curves to derive precise system parameters. The resulting component masses and radii are 0.497 ± 0.005 and 0.205 ± 0.002 $\rm {M}_{\odot }$, and 0.659 ± 0.003 and 0.424 ± 0.002 $\rm {R}_{\odot }$, respectively. With mass and radius uncertainties of ∼1 per cent and ∼0.5 per cent, respectively, THOR 42 is one of the most precisely characterized pre-main sequence eclipsing binaries known. Its systemic velocity, parallax, proper motion, colour–magnitude diagram placement and enlarged radii are all consistent with membership in the 32 Ori Group. The system provides a unique opportunity to test pre-main sequence evolutionary models at an age and mass range not well constrained by observation. From the radius and mass measurements we derive ages of 22–26 Myr using standard (non-magnetic) models, in excellent agreement with the age of the group. However, none of the models can simultaneously reproduce the observed mass, radius, temperature and luminosity of the coeval components. In particular, their H–R diagram ages are 2–4 times younger and we infer masses ∼50 per cent smaller than the dynamical values.


1998 ◽  
Vol 11 (1) ◽  
pp. 371-371
Author(s):  
S. Narusawa ◽  
A. Yamasaki ◽  
Y. Nakamura

Although the evolution of binary systems has been qualitatively interpreted with the evolutionary scenario, the quantitative interpretation of any observed system is still unsatisfactory due to the difficulty of the quantitative treatment of mass and angular momentum transfer/loss. To reach a true understanding of the evolution of binary systems, we have to accumulate more observational evidence. So far, we have observed several binaries that are short-period and noncontact, and found the existence of extremely small-mass systems. In the present paper, we study another short-period (P=0.659d), noncontact, eclipsing binary system, V392 Ori. We have made photometric and spectroscopic observations of V392 Ori. The light curves are found to vary, suggesting the existence of circumstellar matter around the system. Combining the photometric and spectroscopic results, we obtain parameters describing the system; we find the mass of the primary component is only 0.6Mʘ- undermassive for its spectral and luminosity class A5V, suggesting that a considerable amount of its original mass has been lost from the system during the course of evolution. The low-mass problem is very important for investigation of the evolution of close binary systems: largemass loss within and/or after the main-sequence will have a significant influence on the future evolution of binary systems.


2015 ◽  
Vol 12 (S316) ◽  
pp. 328-333
Author(s):  
W. Chantereau ◽  
C. Charbonnel ◽  
G. Meynet

AbstractOur knowledge of the formation and early evolution of globular clusters (GCs) has been totally shaken with the discovery of the peculiar chemical properties of their long-lived host stars. Therefore, the interpretation of the observed Colour Magnitude Diagrams (CMD) and of the properties of the GC stellar populations requires the use of new stellar models computed with relevant chemical compositions. In this paper we use the grid of evolution models for low-mass stars computed by Chantereau et al. (2015) with the initial compositions of second-generation stars as predicted by the fast rotating massive stars scenario to build synthesis models of GCs. We discuss the implications of the assumed initial chemical distribution on 13 Gyr isochrones. We build population synthesis models to predict the fraction of stars born with various helium abundances in present day globular clusters (assuming an age of 13 Gyr). With the current assumptions, 61 % of stars on the main sequence are predicted to be born with a helium abundance in mass fraction, Yini, smaller than 0.3 and only 11 % have a Yini larger than 0.4. Along the horizontal branch, the fraction of stars with Yini inferior to 0.3 is similar to that obtained along the main sequence band (63 %), while the fraction of very He-enriched stars is significantly decreased (only 3 % with Yini larger than 0.38).


2018 ◽  
Vol 620 ◽  
pp. A171 ◽  
Author(s):  
R. Luque ◽  
G. Nowak ◽  
E. Pallé ◽  
D. Kossakowski ◽  
T. Trifonov ◽  
...  

We announce the discovery of two planetary companions orbiting around the low-mass stars Ross 1020 (GJ 3779, M4.0V) and LP 819-052 (GJ 1265, M4.5V). The discovery is based on the analysis of CARMENES radial velocity (RV) observations in the visual channel as part of its survey for exoplanets around M dwarfs. In the case of GJ 1265, CARMENES observations were complemented with publicly available Doppler measurements from HARPS. The datasets reveal two planetary companions, one for each star, that share very similar properties: minimum masses of 8.0 ± 0.5 M⊕ and 7.4 ± 0.5 M⊕ in low-eccentricity orbits with periods of 3.023 ± 0.001 d and 3.651 ± 0.001 d for GJ 3779 b and GJ 1265 b, respectively. The periodic signals around 3 d found in the RV data have no counterpart in any spectral activity indicator. Furthermore, we collected available photometric data for the two host stars, which confirm that the additional Doppler variations found at periods of approximately 95 d can be attributed to the rotation of the stars. The addition of these planets to a mass-period diagram of known planets around M dwarfs suggests a bimodal distribution with a lack of short-period low-mass planets in the range of 2–5 M⊕. It also indicates that super-Earths (>5 M⊕) currently detected by RV and transit techniques around M stars are usually found in systems dominated by a single planet.


Sign in / Sign up

Export Citation Format

Share Document