scholarly journals Galactic Surveys in the Gaia Era

2017 ◽  
Vol 12 (S330) ◽  
pp. 136-143
Author(s):  
Rosemary F. G. Wyse

AbstractThe final astrometric data from the Gaia mission will transform our view of the stellar content of the Galaxy, particularly when complemented with spectroscopic surveys providing stellar parameters, line-of-sight kinematics and elemental abundances. Analyses with Gaia DR1 are already demonstrating the insight gained and the promise of what is to come with future Gaia releases. I present a brief overview of results and puzzles from recent Galactic Archaeology surveys for context, focusing on the Galactic discs.

1970 ◽  
Vol 36 ◽  
pp. 281-301 ◽  
Author(s):  
Edward B. Jenkins

Absorption at the Lyman-α transition from interstellar neutral hydrogen has been observed in the ultraviolet spectra of 18 nearby O and B stars. Radiation damping is the dominant cause of line broadening, which makes the derived line-of-sight column densities proportional to the square of the observed equivalent widths. An average hydrogen density on the order of 0.1 atom cm−3 has been found for most of the stars observed so far. This is in contrast to the findings from surveys of 21-cm radio emission, which suggest 0.7 atom cm−3 exists in the local region of the Galaxy. Several effects which might introduce uncertainties into the Lyman-α measurements are considered, but none seems to be able to produce enough error to explain the disagreement with the 21-cm data. The possibility that small-scale irregularities in the interstellar gas could give significantly lower values at Lyman-α is explored. However, a quantitative treatment of the factor of ten discrepancy in Orion indicates the only reasonable explanation requires the 21-cm flux to come primarily from small, dense, hot clouds which are well separated from each other. The existence of such clouds, however, poses serious theoretical difficulties.


2020 ◽  
Vol 501 (2) ◽  
pp. 1690-1700
Author(s):  
Julio A Carballo-Bello ◽  
David Martínez-Delgado ◽  
Jesús M Corral-Santana ◽  
Emilio J Alfaro ◽  
Camila Navarrete ◽  
...  

ABSTRACT We present the Dark Energy Camera (DECam) imaging combined with Gaia Data Release 2 (DR2) data to study the Canis Major overdensity. The presence of the so-called Blue Plume stars in a low-pollution area of the colour–magnitude diagram allows us to derive the distance and proper motions of this stellar feature along the line of sight of its hypothetical core. The stellar overdensity extends on a large area of the sky at low Galactic latitudes, below the plane, and in the range 230° < ℓ < 255°. According to the orbit derived for Canis Major, it presents an on-plane rotation around the Milky Way. Moreover, additional overdensities of Blue Plume stars are found around the plane and across the Galaxy, proving that these objects are not only associated with that structure. The spatial distribution of these stars, derived using Gaia astrometric data, confirms that the detection of the Canis Major overdensity results more from the warped structure of the Milky Way disc than from the accretion of a dwarf galaxy.


1984 ◽  
Vol 108 ◽  
pp. 243-253
Author(s):  
Nolan R. Walborn

The supergiant H II region 30 Doradus is placed in context as the optically most spectacular component in a much larger region of recent and current star formation in the Large Magellanic Cloud, as shown by deep Hα photographs and the new IRAS results. The current state of knowledge concerning the concentrated central cluster in 30 Dor is summarized. Spectroscopic information exists for only 24 of the brightest members, most of which are WR stars; however, photometry shows over 100 probable members earlier than BO. The spectral classification of these stars is a difficult observational problem currently being addressed; in the meantime their hypothetical ionizing luminosity is calculated from the photometry and compared with that suggested for the superluminous central object R136a alone, and with the H II region luminosity. With reference to related regions in the Galaxy, the likelihood that many of the brightest objects in 30 Dor are multiple systems is emphasized. An interpretation of R136a as a system containing a few very massive stars (as opposed to a single supermassive object) is in good accord with the observations, including the visual micrometer results. The study of 30 Dor and its central cluster is vital for an understanding of the numerous apparently similar regions now being discovered in more distant galaxies.


2009 ◽  
Vol 5 (S262) ◽  
pp. 448-449 ◽  
Author(s):  
Elizabeth Wylie-de Boer ◽  
Kenneth Freeman

AbstractHERMES is a new, multi-object high resolution spectrometer for the 3.9m Anglo Australian Telescope, using the existing 2dF positioner. The primary goal of the HERMES survey is to unravel the history of the Galaxy from detailed elemental abundances for about 1.2 million individual stars. The HERMES chemical tagging survey concentrates on the 5000 to 8000 Å window at a resolving power of 30,000 in order to identify dissolved star formation aggregates and ascertain the importance of mergers throughout the history of the Galaxy.


2020 ◽  
Vol 634 ◽  
pp. A124 ◽  
Author(s):  
M. Bellazzini ◽  
F. Annibali ◽  
M. Tosi ◽  
A. Mucciarelli ◽  
M. Cignoni ◽  
...  

We present the first analysis of the stellar content of the structures and substructures identified in the peculiar star-forming galaxy NGC 5474, based on Hubble Space Telescope resolved photometry from the LEGUS survey. NGC 5474 is a satellite of the giant spiral M 101, and it is known to have a prominent bulge that is significantly off-set from the kinematic centre of the underlying H I and stellar disc. The youngest stars (age ≲ 100 Myr) trace a flocculent spiral pattern extending out to ≳8 kpc from the centre of the galaxy. On the other hand, intermediate-age (age ≳ 500 Myr) and old (age ≳ 2 Gyr) stars dominate the off-centred bulge and a large substructure residing in the south-western part of the disc (SW over-density) and they are not correlated with the spiral arms. The old age of the stars in the SW over-density suggests that this may be another signature of any dynamical interactions that have shaped this anomalous galaxy. We suggest that a fly by with M 101, generally invoked as the origin of the anomalies, may not be sufficient to explain all the observations. A more local and more recent interaction may help to put all the pieces of this galactic puzzle together.


1984 ◽  
Vol 78 ◽  
pp. 257-260
Author(s):  
K. Ishida

AbstractStellar content contributing to near IR radiation do not show radial differentiation in the Galaxy. Late-type giants and supergiants supply about 70% of the total volume emissivity at the K band, in the solar vicinity within 1 kpc, and also at the distance of several kpc in the Scutum region.


1995 ◽  
Vol 166 ◽  
pp. 217-226
Author(s):  
M. Miyamoto

An accumulation of high precision astrometric data in conjunction with high-precision monitoring of the Earth's orientation, motivates “Galactic Astronomy”. As regards local kinematics, all of the three components of both the vorticity and the shear of stars can be completely determined, in addition to the velocity ellipsoid. We can now be released from the constraint of the “axisymmetric” galaxy. The determination of the proper motion of the LMC will be crucial to understanding the global structure and dynamics of the Galaxy with the dark halo and MACHO's motions.


2020 ◽  
Vol 497 (4) ◽  
pp. 4162-4182 ◽  
Author(s):  
Eugene Vasiliev ◽  
Vasily Belokurov

ABSTRACT We use the astrometric and photometric data from Gaia Data Release 2 and line-of-sight velocities from various other surveys to study the 3D structure and kinematics of the Sagittarius dwarf galaxy. The combination of photometric and astrometric data makes it possible to obtain a very clean separation of Sgr member stars from the Milky Way foreground; our final catalogue contains 2.6 × 105 candidate members with magnitudes G < 18, more than half of them being red clump stars. We construct and analyse maps of the mean proper motion and its dispersion over the region ∼30 × 12 deg, which show a number of interesting features. The intrinsic 3D density distribution (orientation, thickness) is strongly constrained by kinematics; we find that the remnant is a prolate structure with the major axis pointing at ∼45° from the orbital velocity and extending up to ∼5 kpc, where it transitions into the stream. We perform a large suite of N-body simulations of a disrupting Sgr galaxy as it orbits the Milky Way over the past 2.5 Gyr, which are tailored to reproduce the observed properties of the remnant (not the stream). The richness of available constraints means that only a narrow range of parameters produce a final state consistent with observations. The total mass of the remnant is $\sim \!4\times 10^8\, \mathrm{M}_\odot$, of which roughly a quarter resides in stars. The galaxy is significantly out of equilibrium, and even its central density is below the limit required to withstand tidal forces. We conclude that the Sgr galaxy will likely be disrupted over the next Gyr.


2003 ◽  
Vol 212 ◽  
pp. 515-522
Author(s):  
Anthony F.J. Moffat ◽  

While NGC 3603 is often quoted as the most massive visible Giant H ii Region in the Galaxy, there are other similar and even more massive regions now being found towards the inner Galaxy in the near-IR. Nevertheless, NGC 3603 still retains the status of clone to the dense core-object in 30 Dor, R 136 — but 7x closer and 49x less crowded! This paper summarizes the most recent findings concerning NGC 3603's color-magnitude diagram (CMD), initial mass function (IMF), mass segregation and stellar content — including its unusually luminous H-rich WNL members — down to its pre-main-sequence stars near the H-burning limit. Of special relevance are new high-resolution X-ray and radio images as related to merging/colliding winds and three massive proplyd-like objects. NGC 3603 is a somewhat younger, hotter, scaled-down version of typical starbursts found in other galaxies.


1964 ◽  
Vol 20 ◽  
pp. 116-122
Author(s):  
M. M. Komesaroff ◽  
G. Westerhout

Radio studies of galactic HII regions are best carried out at the two ends of the radio spectrum. At high frequencies, of hundreds or thousands of megacycles per second, HII regions are seen by virtue of their thermal emission against a weak nonthermal background. Since radio waves are unaffected by the obscuration along the plane, it is possible in principle to see right through the Galaxy, and the high resolution which can be achieved in the thousands of megacycles range enables us to study at least the nearer regions in considerable detail. At low frequencies, below about 20 Mc/s, ionized hydrogen is seen in absorption against a bright nonthermal background. Since quite tenuous regions may be almost opaque at the lower frequencies, the technique provides quite a sensitive method of detecting them. The absorption increases with decreasing frequency so that studies at different frequencies enable us to see to varying depths along the line of sight and could permit the derivation of rough distance estimates.


Sign in / Sign up

Export Citation Format

Share Document