scholarly journals Radio studies of HII regions and galactic structure

1964 ◽  
Vol 20 ◽  
pp. 116-122
Author(s):  
M. M. Komesaroff ◽  
G. Westerhout

Radio studies of galactic HII regions are best carried out at the two ends of the radio spectrum. At high frequencies, of hundreds or thousands of megacycles per second, HII regions are seen by virtue of their thermal emission against a weak nonthermal background. Since radio waves are unaffected by the obscuration along the plane, it is possible in principle to see right through the Galaxy, and the high resolution which can be achieved in the thousands of megacycles range enables us to study at least the nearer regions in considerable detail. At low frequencies, below about 20 Mc/s, ionized hydrogen is seen in absorption against a bright nonthermal background. Since quite tenuous regions may be almost opaque at the lower frequencies, the technique provides quite a sensitive method of detecting them. The absorption increases with decreasing frequency so that studies at different frequencies enable us to see to varying depths along the line of sight and could permit the derivation of rough distance estimates.

1976 ◽  
Vol 29 (5) ◽  
pp. 419 ◽  
Author(s):  
MJ Batty

A search for H 2520( recombination line emission was made by scanning the galactic equator region using the Molonglo radio telescope. Upper limits were established over the range of galactic longitude accessible to the instrument. For the region III ;S 40�, estimates of the background thermal continuum brightness temperature were used to derive lower limits of ~ 2000 K for the electron temperature of the gas along the line of sight. Lower limits for the electron density obtained by considering probable non-LTE effects suggest that the thermal emission over this range is due to low surface brightness HII regions. The observed H 2520( upper limit averaged over the range 270� ;S I ;S 320� just admits the line intensity calculated by Shaver (1975) for the cold cloud component of the general interstellar medium.


2002 ◽  
Vol 199 ◽  
pp. 307-308
Author(s):  
Sanjay Bhatnagar

Radio observations of large Supernova Remnants (SNRs) in the Galaxy are plagued with the problems of confusion and limitations of synthesis telescopes in imaging the emission at large angular scales. Since most SNRs are brighter at low radio frequencies, and the contamination due to thermal emission is reduced, deep and high resolution imaging of Galactic SNRs at meterwave lengths is most useful in their detection and classification. Relatively high resolution and sensitivity over a large range of angular scales provided by the GMRT at meterwave lengths makes it an ideal instrument for detailed multi-frequency imaging of Galactic SNRs.


1979 ◽  
Vol 84 ◽  
pp. 357-366 ◽  
Author(s):  
P. G. Mezger ◽  
T. Pauls

The centimeter wavelength continuum radiation seen toward the Galactic center (Figure 1) is a mixture of thermal (free-free) and nonthermal (synchrotron) radiation which originates in the nucleus and along the line-of-sight. In this review we discuss only the thermal emission (also see Mezger 1974 and Oort 1977). High-frequency radio continuum and recombination line observations show that the thermal radiation comes from extend, low-density (ELD) HII, and a number of giant “radio HII regions” (see Mezger 1978 for definitions). The approximate half-power contour of the ELD HII (labelled EI in Fig. 1), probably represents a superposition of evolved and expanded HII regions. Thermal radiation outside EI comes predominantly from along the line-of-sight (see Pauls and Mezger 1975).


1991 ◽  
Vol 144 ◽  
pp. 187-196
Author(s):  
W. Reich

Changes of the cosmic ray electron spectrum throughout the Galaxy have been found, based on the comparison of large-scale radio continuum surveys. These observations are not compatible with the assumption of a static Galactic halo, but indicate the existence of a Galactic wind. Galactic plane surveys reveal sources of cosmic ray electrons in the Galactic disk. Recent studies of the population of radio sources show no evidence for a large number of compact Galactic non-thermal sources. Most of the extended sources are probably HII-regions. Relatively few new supernova remnants (SNRs) with low surface brightness could be identified. Most of the non-thermal emission in the disk-halo interface seems diffuse or unresolved, even at arcmin angular resolution.


2015 ◽  
Vol 804 ◽  
pp. 25-29 ◽  
Author(s):  
Wanlop Harnnarongchai ◽  
Kantima Chaochanchaikul

The sound absorbing efficiency of natural rubber (NR) foam is affected by the cell morphology of foam. Potassium oleate (K-oleate) and sodium bicarbonate (NaHCO3) were used as blowing agents to create open-cell foam. Amounts of the blowing agent were varied from 0.5 to 8.0 part per hundred of rubber (phr) to evaluate cell size and number of foam cell as well as sound adsorption coefficient of NR foam. The NR foam specimens were prepared using mould and air-circulating oven for vulcanizing and foaming processes. The results indicated that K-oleate at 2.0 phr and NaHCO3 at 0.5 phr led to form NR foam with the smallest cell size and the largest number of foam cell. At low frequencies, the optimum sound adsorption coefficient of NR foam was caused by filling K-oleate 2 phr. However, that of NR foam at high frequencies was provided by 0.5 phr-NaHCO3 addition.


1993 ◽  
Vol 107 (3) ◽  
pp. 179-182 ◽  
Author(s):  
J. R. Cullen ◽  
M. J. Cinnamond

The relationship between diabetes and senbsorineural hearing loss has been disputed. This study compares 44 insulin-dependent diabetics with 38 age and sex matched controls. All had pure tone and speech audiometry performed, with any diabetics showing sensorineural deafness undergoing stapedial reflecx decat tests. In 14 diabetics stapedial reflex tests showed no tone decay in any patient, but seven showed evidence of recruitment. Analysis of vaiance showed the diabetics to be significantly deafer than the control population.The hearing loss affected high frequencies in both sexes, but also low frequencies in the male. Speech discrimination scores showed no differences. Further analysis by sex showed the males to account for most of the differences. Analysys of the audiograms showered mostly a high tone loss. Finally duration of disbetes, insulin dosage and family history of diabtes were not found to have a significant effect on threshold.


Author(s):  
Jerome E. Manning

Abstract Statistical energy analysis provides a technique to predict acoustic and vibration levels in complex dynamic systems. The technique is most useful for broad-band excitation at high frequencies where many modes contribute to the response in any given frequency band. At mid and low frequencies, the number of modes contributing to the response may be quite small. In this case SEA predictions show large variability from measured data and may not be useful for vibroacoustic design. This paper focuses on the use of measured data to improve the accuracy of the predictions. Past work to measure the SEA coupling and damping loss factors has not been successful for a broad range of systems that do not have light coupling. This paper introduces a new hybrid SEA technique that combines measured mobility functions with analytical SEA predictions. The accuracy of the hybrid technique is shown to be greatly improved at mid and low frequencies.


Author(s):  
Gundula B. Runge ◽  
Al Ferri ◽  
Bonnie Ferri

This paper considers an anytime strategy to implement controllers that react to changing computational resources. The anytime controllers developed in this paper are suitable for cases when the time scale of switching is in the order of the task execution time, that is, on the time scale found commonly with sporadically missed deadlines. This paper extends the prior work by developing frequency-weighted anytime controllers. The selection of the weighting function is driven by the expectation of the situations that would require anytime operation. For example, if the anytime operation is due to occasional and isolated missed deadlines, then the weighting on high frequencies should be larger than that for low frequencies. Low frequency components will have a smaller change over one sample time, so failing to update these components for one sample period will have less effect than with the high frequency components. An example will be included that applies the anytime control strategy to a model of a DC motor with deadzone and saturation nonlinearities.


2000 ◽  
Vol 39 (10) ◽  
pp. 1645-1656 ◽  
Author(s):  
Gail M. Skofronick-Jackson ◽  
James R. Wang

Abstract Profiles of the microphysical properties of clouds and rain cells are essential in many areas of atmospheric research and operational meteorology. To enhance the understanding of the nonlinear and underconstrained relationships between cloud and hydrometeor microphysical profiles and passive microwave brightness temperatures, estimations of cloud profiles for an anvil region, a convective region, and an updraft region of an oceanic squall were performed. The estimations relied on comparisons between radiative transfer calculations of incrementally estimated microphysical profiles and concurrent dual-altitude wideband brightness temperatures from the 22 February 1993 flight during the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. The wideband observations (10–220 GHz) are necessary for estimating cloud profiles reaching up to 20 km. The low frequencies enhance the rain and cloud water profiles, and the high frequencies are required to detail the higher-altitude ice microphysics. A microphysical profile was estimated for each of the three regions of the storm. Each of the three estimated profiles produced calculated brightness temperatures within ∼10 K of the observations. A majority of the total iterative adjustments were to the estimated profile’s frozen hydrometeor characteristics and were necessary to match the high-frequency calculations with the observations. This requirement indicates a need to validate cloud-resolving models using high frequencies. Some difficulties matching the 37-GHz observation channels on the DC-8 and ER-2 aircraft with the calculations simulated at the two aircraft heights (∼11 km and 20 km, respectively) were noted, and potential causes were presented.


1957 ◽  
Vol 4 ◽  
pp. 107-122 ◽  
Author(s):  
R. Minkowski

Loose agreement of a radio position of low accuracy with that of some object listed in the NGC is not sufficient to provide the identification of a radio source. Even satisfactory coincidence of a precise position with that of an astronomical object requires supporting evidence. Agreement of the size of the source with that of the visible object, at least in order of magnitude, is an important argument in favour of an identification; exact agreement of sizes can be expected only where radio and optical emission are physically connected. The radio spectrum, the optical spectrum, and the physical characteristics of the visual object also have to be taken into account. Observations of the radio spectrum should be particularly useful to support the identification of sources with H 11 regions which can be recognized from their thermal emission even if they are obscured and optically inaccessible. If all data are available, satisfactory agreement exists between optical and radio observations. The best example of this kind at the moment is perhaps NGC 2237, the Rosette nebula, reported as a source by Ko and Krauss (1955) [1] and also observed by Mills, Little and Sheridan (1956 [11]; see also paper 18).


Sign in / Sign up

Export Citation Format

Share Document