scholarly journals Identification of binary and multiple systems in TGAS using the Virtual Observatory

2017 ◽  
Vol 12 (S330) ◽  
pp. 225-226
Author(s):  
F. Jiménez-Esteban ◽  
E. Solano

AbstractBinary and multiple stars have long provided an effective method of testing stellar formation and evolution theories. In particular, wide binary systems with separations > 20,000 au are particularly challenging as their physical separations are beyond the typical size of a collapsing cloud core (5,000 - 10,000 au). We present here a preliminary work in which we make use of the TGAS catalogue and Virtual Observatory tools and services (Aladin, TOPCAT, STILTS, VOSA, VizieR) to identify binary and multiple star candidate systems. The catalogue will be available from the Spanish VO portal (http://svo.cab.inta-csic.es) in the coming months.

1998 ◽  
Vol 11 (1) ◽  
pp. 539-541
Author(s):  
F. Mignard

Abstract The Hipparcos Catalogue provides general astrometric and photometric information on double and multiple stars in specific fields of the main Catalogue and detailed data on the components in the various sections of a dedicated annex: the Double and Multiple Systems Annex (DMSA). Overall statistics of these solutions are presented for the 13211 entries of this annex and the different types of solutions are outlined.


2001 ◽  
Vol 200 ◽  
pp. 84-92 ◽  
Author(s):  
Andrei Tokovinin

The available information on the statistics of high multiplicity (3–6 components) systems is reviewed. The ratio of triple to binary systems is f3 ≍ 0.11, while fn ≍ 0.25 for higher n. Despite selection effects in the multiple star catalogue, the signatures of formation mechanisms are found in the distributions of period ratios and mass ratios. For example, the frequent occurrence of close sub-systems with periods less than 6 days can be explained by tidal dissipation in a 3-body system. In triple stars the angular momentum vectors of inner orbits are inclined to those of outer orbits by an average angle of 50°, hence the orbital spins are neither co-aligned nor completely random. Close binaries have a tendency to be found in higher-multiplicity systems, showing that close and wide binarity is statistically related. Future theoretical and observational studies are outlined.


2011 ◽  
Vol 7 (S282) ◽  
pp. 425-428
Author(s):  
Satoshi Mayama ◽  
Motohide Tamura ◽  
Tomoyuki Hanawa ◽  
Tomoaki Matsumoto ◽  
Miki Ishii ◽  
...  

AbstractProtoplanetary disks are ubiquitously observed around young solar-mass stars and are considered to be not only natural by-products of stellar evolution but also precursors of planet formation. If a forming star has close companions, the protoplanetary disk may be seriously influenced. It is important to consider this effect because most stars form as multiples. Thus, studies of protoplanetary disks in multiple systems are essential to describe the general processes of star and planet formation.We present the direct image of an interacting binary protoplanetary system. We obtained an infrared image of a young multiple circumstellar disk system, SR24, with the Subaru 8.2-m Telescope. Both circumprimary and circumsecondary disks are clearly resolved with a 0.1 arcsecond resolution. The binary system exhibits a bridge of infrared emission connecting the two disks and a long spiral arm extending from the circumprimary disk. A spiral arm would suggest that the SR24 system rotates counter-clockwise. The orbital period of the binary is 15,000 yr. Numerical simulations reveal that the bridge corresponds to gas flow and a shock wave caused by the collision of gas rotating around the primary and secondary stars. The simulations also show that fresh material streams along the spiral arm, confirming the theoretical proposal that gas is replenished from a circum-multiple reservoir. These results reveal the mechanism of interacting protoplanetary disks in young multiple systems. Furthermore, our observations provide the first direct image that enables a comparison with theoretical models of mass accretion in binary systems. The observations of this binary system provide a great opportunity to test and refine theoretical models of star and planet formation in binary systems.


1995 ◽  
Vol 166 ◽  
pp. 395-395 ◽  
Author(s):  
J. Dommanget ◽  
O. Nys

The Hipparcos mission required the realisation of an Input Catalogue giving the positions of 100.000 stars (single or components of double and multiple systems) to an accuracy better than 1″5. At the start of this work (1981) no specific catalogue of double and multiple stars provided these data. The only general data base on double stars available to us, giving positions to ±1′, was the Index (1961,0) updated at the USNO by C. E. Worley till 1976,5 and of which a copy was communicated by P. Muller of the Observatoire de Meudon. It has then been decided to reformat this Catalogue in such a way as to allow the introduction of all necessary information for the mission. This permitted a correct cross-identification with the Hipparcos Input Catalogue (of finally 118.000 stars). It was later called: the Catalogue of the Components of Double and Multiple stars (CCDM). Since then, it has been developed and its aim remains to furnish the best accurate locations and descriptions of the double and multiple systems on the sky for all double and multiple star research.


2014 ◽  
Vol 9 (S307) ◽  
pp. 330-335 ◽  
Author(s):  
E. Alecian ◽  
C. Neiner ◽  
G. A. Wade ◽  
S. Mathis ◽  
D. Bohlender ◽  
...  

AbstractIt is now well established that a fraction of the massive (M> 8M⊙) star population hosts strong, organised magnetic fields, most likely of fossil origin. The details of the generation and evolution of these fields are still poorly understood. The BinaMIcS project takes an important step towards the understanding of the interplay between binarity and magnetism during the stellar formation and evolution, and in particular the genesis of fossil fields, by studying the magnetic properties of close binary systems. The components of such systems are most likely formed together, at the same time and in the same environment, and can therefore help us to disentangle the role of initial conditions on the magnetic properties of the massive stars from other competing effects such as age or rotation. We present here the main scientific objectives of the BinaMIcS project, as well as preliminary results from the first year of observations from the associated ESPaDOnS and Narval spectropolarimetric surveys.


1984 ◽  
Vol 88 ◽  
pp. 389-392
Author(s):  
Francis C. Fekel

A search for binary and multiple star components previously undetected spectroscopically was initiated in 1976. This was the result of the availability of solid state Reticon and CCD detectors which have high quantum efficiency at red and infrared wavelengths. Such detectors enable high signal-to-noise observations to be made in search of weak secondary or tertiary features from cooler stars. Some of the work on multiple systems has been reported previously by Fekel, Lacy, and Tomkin (1980) and Fekel (1983). Emphasis most recently has been placed on a search for the secondaries of single-lined solar-type binaries.


2016 ◽  
Vol 466 (3) ◽  
pp. 2983-3006 ◽  
Author(s):  
M. C. Gálvez-Ortiz ◽  
E. Solano ◽  
N. Lodieu ◽  
M. Aberasturi

2006 ◽  
Vol 2 (S240) ◽  
pp. 5-16 ◽  
Author(s):  
Edward F. Guinan ◽  
Petr Harmanec ◽  
William Hartkopf

AbstractAn overview is presented of the many new and exciting developments in binary and multiple star studies that were discussed at IAU Symposium 240. Impacts on binary and multiple star studies from new technologies, techniques, instruments, missions and theory are highlighted. It is crucial to study binary and multiple stars because the vast majority of stars (>60%) in our Galaxy and in other galaxies consist, not of single stars, but of double and multiple star systems. To understand galaxies we need to understand stars, but since most are members of binary and multiple star systems, we need to study and understand binary stars. The major advances in technology, instrumentation, computers, and theory have revolutionized what we know (and also don't know) about binary and multiple star systems. Data now available from interferometry (with milliarcsecond [mas] and sub-mas precisions), high-precision radial velocities (∼1-2 m/s) and high precision photometry (<1–2 milli-mag) as well as the wealth of new data that are pouring in from panoramic optical and infrared surveys (e.g., > 10,000 new binaries found since 1995), have led to a renaissance in binary star and multiple star studies. For example, advances have lead to the discovery of new classes of binary systems with planet and brown dwarf components (over 200 systems). Also, extremely valuable data about binary stars are available across the entire electromagnetic spectrum — from gamma-ray to IR space missions and from the ground using increasingly more powerful and plentiful optical and radio telescopes as well as robotic telescopes. In the immediate future, spectral coverage could even be extended beyond the radio to the first detection of gravity waves from interacting close binaries. Also, both the quality and quantity of data now available on binary and multiple stars are making it possible to gain unprecedented new insights into the structure, and formation and evolution of binary stars, as well as providing valuable astrophysical information (like precise stellar masses, radii, ages, luminosities and distances) to test and constrain current astrophysical theory. These major advances permit tests of current theories and ideas in stellar astrophysics and provide the foundations for the next steps in modeling and improvements in theory to be taken.


2010 ◽  
Vol 6 (S270) ◽  
pp. 41-44
Author(s):  
Hervé Bouy

AbstractIt is now well established that the majority of young stars are found in multiple systems, so that any theory of stellar formation must account for their existence and properties. Studying the properties of multiple star systems therefore represents a very powerful approach to place observational constraints on star formation theories. Additionally, multiple systems offer other advantages. They provide the most accurate and unambiguous way to measure masses, using orbital fitting and Kepler's laws, and even the stellar radius in the special case of eclipsing binaries. They also allow to compare the properties of 2 coeval objects with different masses, providing important tests for the evolutionary models.


Sign in / Sign up

Export Citation Format

Share Document