scholarly journals On the onset of dust formation in AGB stars

2018 ◽  
Vol 14 (S343) ◽  
pp. 119-128
Author(s):  
David Gobrecht ◽  
Stefan T. Bromley ◽  
John M. C. Plane ◽  
Leen Decin ◽  
Sergio Cristallo

AbstractA promising candidate to initiate dust formation in oxygen-rich AGB stars is alumina (Al2O3) showing an emission feature around ∼13μm attributed to Al−O stretching and bending modes (Posch+99,Sloan+03). The counterpart to alumina in carbon-rich AGB atmospheres is the highly refractory silicon carbide (SiC) showing a characteristic feature around 11.3μm (Treffers74). Alumina and SiC grains are thought to represent the first condensates to emerge in AGB stellar atmospheres. We follow a bottom-up approach, starting with the smallest stoichiometric clusters (i.e. Al4O6, Si2C2), successively building up larger-sized clusters. We present new results of quantum-mechanical structure calculations of (Al2O3)n, n = 1−10 and (SiC)n clusters with n = 1−16, including potential energies, rotational constants, and structure-specific vibrational spectra. We demonstrate the energetic viability of homogeneous nucleation scenarios where monomers (Al2O3 and SiC) or dimers (Al4O6 and Si2C2) are successively added. We find significant differences between our quantum theory based results and nanoparticle properties derived from (classical) nucleation theory.

2018 ◽  
Vol 614 ◽  
pp. A126 ◽  
Author(s):  
G. K. H. Lee ◽  
J. Blecic ◽  
Ch. Helling

Context. The cloud formation process starts with the formation of seed particles, after which, surface chemical reactions grow or erode the cloud particles. If seed particles do not form, or are not available by another means, an atmosphere is unable to form a cloud complex and will remain cloud free. Aims. We aim to investigate which materials may form cloud condensation seeds in the gas temperature and pressure regimes (Tgas = 100–2000 K, pgas = 10−8–100 bar) expected to occur in planetary and brown dwarf atmospheres. Methods. We have applied modified classical nucleation theory which requires surface tensions and vapour pressure data for each solid species, which are taken from the literature. Input gas phase number densities are calculated assuming chemical equilibrium at solar metallicity. Results. We calculated the seed formation rates of TiO2[s] and SiO[s] and find that they efficiently nucleate at high temperatures of Tgas = 1000–1750 K. Cr[s], KCl[s] and NaCl[s] are found to efficiently nucleate across an intermediate temperature range of Tgas = 500–1000 K. We find CsCl[s] may serve as the seed particle for the water cloud layers in cool sub-stellar atmospheres. The nucleation rates of four low temperature ice species (Tgas = 100–250 K), H2O[s/l], NH3[s], H2S[s/l], and CH4[s], are also investigated for the coolest sub-stellar and planetary atmospheres. Conclusions. Our results suggest a possibly (Tgas, pgas) distributed hierarchy of seed particle formation regimes throughout the substellar and planetary atmospheric temperature-pressure space. With TiO2[s] providing seed particles for the most refractory cloud formation species (e.g. Al2O3[s], Fe[s], MgSiO3[s], Mg2SiO4[s]), Cr[s] providing the seed particles for MnS[s], Na2S[s], and ZnS[s] sulfides, and K/Na/Rb/Cs/NH4-Cl binding solid species providing the seed particles for H2O[s/l] and NH4-H2PO4/SH[s] clouds. A detached, high-altitude aerosol layer may form in some sub-stellar atmospheres from the nucleation process, dependent on the upper atmosphere temperature, pressure and availability of volatile elements. In order to improve the accuracy of the nucleation rate calculation, further research into the small cluster thermochemical data for each cloud species is warranted. The validity of these seed particle scenarios will be tested by applying it to more complete cloud models in the future.


2019 ◽  
Vol 15 (S350) ◽  
pp. 245-248
Author(s):  
David Gobrecht ◽  
John M.C. Plane ◽  
Stefan T. Bromley ◽  
Leen Decin ◽  
Sergio Cristallo

AbstractAsymptotic Giant Branch (AGB) stars contribute a major part to the global dust budget in galaxies. Owing to their refractory nature alumina (stoichiometric formula AlO) is a promising candidate to be the first condensate emerging in the atmospheres of oxygen-rich AGB stars. Strong evidence for that is supplied by the presence of alumina in pristine meteorites and a broad spectral feature observed around ∼ 13 μm. The emergence of a specific condensate depends on the thermal stability of the solid, the gas density and its composition. The evaluation of the condensates is based on macroscopic bulk properties. The growth and size distribution of dust grains is commonly described by Classical Nucleation Theory (CNT). We question the applicability of CNT in an expanding circumstellar envelope as CNT presumes thermodynamic equilibrium and requires, in practise, seed nuclei on which material can condense. However, nano-sized molecular clusters differ significantly from bulk analogues. Quantum effects of the clusters lead to non-crystalline structures, whose characteristics (energy, geometry) differ substantially, compared to the bulk material. Hence, a kinetic quantum-chemical treatment involving various transition states describes dust nucleation most accurately. However, such a treatment is prohibitive for systems with more than 10 atoms. We discuss the viability of chemical-kinetic routes towards the formation of the monomer (Al2O3) and the dimer (Al4O6) of alumina.


2019 ◽  
Vol 489 (4) ◽  
pp. 4890-4911 ◽  
Author(s):  
Jels Boulangier ◽  
D Gobrecht ◽  
L Decin ◽  
A de Koter ◽  
J Yates

ABSTRACT Unravelling the composition and characteristics of gas and dust lost by asymptotic giant branch (AGB) stars is important as these stars play a vital role in the chemical life cycle of galaxies. The general hypothesis of their mass-loss mechanism is a combination of stellar pulsations and radiative pressure on dust grains. However, current models simplify dust formation, which starts as a microscopic phase transition called nucleation. Various nucleation theories exist, yet all assume chemical equilibrium, growth restricted by monomers, and commonly use macroscopic properties for a microscopic process. Such simplifications for initial dust formation can have large repercussions on the type, amount, and formation time of dust. By abandoning equilibrium assumptions, discarding growth restrictions, and using quantum mechanical properties, we have constructed and investigated an improved nucleation theory in AGB wind conditions for four dust candidates, TiO2, MgO, SiO, and Al2O3. This paper reports the viability of these candidates as first dust precursors and reveals implications of simplified nucleation theories. Monomer restricted growth underpredicts large clusters at low temperatures and overpredicts formation times. Assuming the candidates are present, Al2O3 is the favoured precursor due to its rapid growth at the highest considered temperatures. However, when considering an initially atomic chemical mixture, only TiO2-clusters form. Still, we believe Al2O3 to be the prime candidate due to substantial physical evidence in presolar grains, observations of dust around AGB stars at high temperatures, and its ability to form at high temperatures and expect the missing link to be insufficient quantitative data of Al-reactions.


2018 ◽  
Vol 14 (S343) ◽  
pp. 108-118
Author(s):  
Tomasz Kamiński

AbstractCondensation of circumstellar dust begins with formation of molecular clusters close to the stellar photosphere. These clusters are predicted to act as condensation cores at lower temperatures and allow efficient dust formation farther away from the star. Recent observations of metal oxides, such as AlO, AlOH, TiO, and TiO2, whose emission can be traced at high angular resolutions with ALMA, have allowed first observational studies of the condensation process in oxygen-rich stars. We are now in the era when depletion of gas-phase species into dust can be observed directly. I review the most recent observations that allow us to identify gas species involved in the formation of inorganic dust of AGB stars and red supergiants. I also discuss challenges we face in interpreting the observations, especially those related to non-equilibrium gas excitation and the high complexity of stellar atmospheres in the dust-formation zone.


1987 ◽  
Vol 122 ◽  
pp. 543-544
Author(s):  
E. Sedlmayr

The formation of carbon grains is described by a chemical pathway from acetylene via polyaromatic hydrogens (PAHs). The proposed mechanism is in excellent agreement with the observations and provides in particular the observed low condensation temperature which cannot be explained by classical nucleation theory.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Min Yang ◽  
Lu Wang ◽  
Wentao Yan

AbstractA three-dimensional phase-field model is developed to simulate grain evolutions during powder-bed-fusion (PBF) additive manufacturing, while the physically-informed temperature profile is implemented from a thermal-fluid flow model. The phase-field model incorporates a nucleation model based on classical nucleation theory, as well as the initial grain structures of powder particles and substrate. The grain evolutions during the three-layer three-track PBF process are comprehensively reproduced, including grain nucleation and growth in molten pools, epitaxial growth from powder particles, substrate and previous tracks, grain re-melting and re-growth in overlapping zones, and grain coarsening in heat-affected zones. A validation experiment has been carried out, showing that the simulation results are consistent with the experimental results in the molten pool and grain morphologies. Furthermore, the grain refinement by adding nanoparticles is preliminarily reproduced and compared against the experimental result in literature.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 715
Author(s):  
Miodrag J. Lukić ◽  
Felix Lücke ◽  
Teodora Ilić ◽  
Katharina Petrović ◽  
Denis Gebauer

Nucleation of minerals in the presence of additives is critical for achieving control over the formation of solids in biomineralization processes or during syntheses of advanced hybrid materials. Herein, we investigated the early stages of Fe(III) (oxy)(hydr)oxide formation with/without polyglutamic acid (pGlu) at low driving force for phase separation (pH 2.0 to 3.0). We employed an advanced pH-constant titration assay, X-ray diffraction, thermal analysis with mass spectrometry, Fourier Transform infrared spectroscopy, and scanning electron microscopy. Three stages were observed: initial binding, stabilization of Fe(III) pre-nucleation clusters (PNCs), and phase separation, yielding Fe(III) (oxy)(hydr)oxide. The data suggest that organic–inorganic interactions occurred via binding of olation Fe(III) PNC species. Fourier Transform Infrared Spectroscopy (FTIR) analyses revealed a plausible interaction motif and a conformational adaptation of the polypeptide. The stabilization of the aqueous Fe(III) system against nucleation by pGlu contrasts with the previously reported influence of poly-aspartic acid (pAsp). While this is difficult to explain based on classical nucleation theory, alternative notions such as the so-called PNC pathway provide a possible rationale. Developing a nucleation theory that successfully explains and predicts distinct influences for chemically similar additives like pAsp and pGlu is the Holy Grail toward advancing the knowledge of nucleation, early growth, and structure formation.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 134
Author(s):  
Ivan Smirnov ◽  
Natalia Mikhailova

Researchers are still working on the development of models that facilitate the accurate estimation of acoustic cavitation threshold. In this paper, we have analyzed the possibility of using the incubation time criterion to calculate the threshold of the onset of acoustic cavitation depending on the ultrasound frequency, hydrostatic pressure, and temperature of a liquid. This criterion has been successfully used by earlier studies to calculate the dynamic strength of solids and has recently been proposed in an adapted version for calculating the cavitation threshold. The analysis is carried out for various experimental data for water presented in the literature. Although the criterion assumes the use of macroparameters of a liquid, we also considered the possibility of taking into account the size of cavitation nuclei and its influence on the calculation result. We compared the results of cavitation threshold calculations done using the incubation time criterion of cavitation and the classical nucleation theory. Our results showed that the incubation time criterion more qualitatively models the results of experiments using only three parameters of the liquid. We then discussed a possible relationship between the parameters of the two approaches. The results of our study showed that the criterion under consideration has a good potential and can be conveniently used for applications where there are special requirements for ultrasound parameters, maximum negative pressure, and liquid temperature.


Sign in / Sign up

Export Citation Format

Share Document