scholarly journals On the prospects of imaging Sagittarius A* from space

2018 ◽  
Vol 14 (S342) ◽  
pp. 24-28
Author(s):  
Freek Roelofs ◽  
Heino Falcke ◽  
Christiaan Brinkerink ◽  
Monika Moscibrodzka ◽  
Leonid I. Gurvits ◽  
...  

AbstractVery Long Baseline Interferometry (VLBI) at sub-millimeter waves has the potential to image the shadow of the black hole in the Galactic Center, Sagittarius A* (Sgr A*), and thereby test basic predictions of the theory of general relativity. We investigate the imaging prospects of a new Space VLBI mission concept. The setup consists of two satellites in polar or equatorial circular Medium-Earth Orbits with slightly different radii, resulting in a dense spiral-shaped uv-coverage with long baselines, allowing for extremely high-resolution and high-fidelity imaging of radio sources. We simulate observations of a general relativistic magnetohydrodynamics model of Sgr A* for this configuration with noise calculated from model system parameters. After gridding the uv-plane and averaging visibilities accumulated over multiple months of integration, images of Sgr A* with a resolution of up to 4 μ as could be reconstructed, allowing for stronger tests of general relativity and accretion models than with ground-based VLBI.

2019 ◽  
Vol 625 ◽  
pp. A124 ◽  
Author(s):  
Freek Roelofs ◽  
Heino Falcke ◽  
Christiaan Brinkerink ◽  
Monika Mościbrodzka ◽  
Leonid I. Gurvits ◽  
...  

Context. It has been proposed that Very Long Baseline Interferometry (VLBI) at submillimeter waves will allow us to image the shadow of the black hole in the center of our Milky Way, Sagittarius A* (Sgr A*), and thereby test basic predictions of the theory of general relativity. Aims. This paper presents imaging simulations of a new Space VLBI (SVLBI) mission concept. An initial design study of the concept has been presented in the form of the Event Horizon Imager (EHI). The EHI may be suitable for imaging Sgr A* at high frequencies (up to ∼690 GHz), which has significant advantages over performing ground-based VLBI at 230 GHz. The concept EHI design consists of two or three satellites in polar or equatorial circular medium-Earth orbits (MEOs) with slightly different radii. Due to the relative drift of the satellites along the individual orbits over the course of several weeks, this setup will result in a dense spiral-shaped uv-coverage with long baselines (up to ∼60 Gλ), allowing for extremely high-resolution and high-fidelity imaging of radio sources. Methods. We simulated observations of general relativistic magnetohydrodynamics (GRMHD) models of Sgr A* for the proposed configuration and calculate the expected noise based on preliminary system parameters. On long baselines, where the signal-to-noise ratio may be low, fringes could be detected assuming that the system is sufficiently phase stable and the satellite orbits can be reconstructed with sufficient accuracy. Averaging visibilities accumulated over multiple epochs of observations could then help improving the image quality. With three satellites instead of two, closure phases could be used for imaging. Results. Our simulations show that the EHI could be capable of imaging the black hole shadow of Sgr A* with a resolution of 4 μas (about 8% of the shadow diameter) within several months of observing time. Conclusion. Our preliminary study of the EHI concept shows that it is potentially of high scientific value. It could be used to measure black hole shadows much more precisely than with ground-based VLBI, allowing for stronger tests of general relativity and accretion models.


1996 ◽  
Vol 172 ◽  
pp. 497-500
Author(s):  
V.I. Altunin ◽  
V.A. Alekseev ◽  
E.L. Akim ◽  
T.M. Eubanks ◽  
K.A. Kingham ◽  
...  

This paper describes a proposal for a new space radio astronomy mission for astrometry which uses very-long-baseline interferometry (VLBI) called Astrometry VLBI in Space (AVS). The ultimate goals of AVS are to improve the accuracy of radio astrometry measurements to the microarcsecond level in one epoch of measurements and to improve the accuracy of the transformation between the inertial radio and optical coordinate reference frames. The scientific objectives of the mission cover a few categories of astrometry tasks such as astrometry of the solar system, reference frames ties, tests of general relativity and cosmology (for references see Lowe and Treuhaft, 1994, Russell et al., 1992, Eubanks et al., 1994).


2013 ◽  
Vol 9 (S303) ◽  
pp. 147-149
Author(s):  
L. O. Sjouwerman ◽  
Y. M. Pihlström

AbstractWe report on the detection of 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) complex with the Karl G. Jansky Very Large Array (VLA). These VLA observations show that the Sgr A complex harbors at least three different maser tracers of shocked regions in the radio regime. The 44 GHz masers correlate with the positions and velocities of previously detected 36 GHz CH3OH masers, but less with 1720 MHz OH masers. Our detections agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under even cooler and less dense conditions. We speculate that the geometry of the 36 GHz masers outlines the current location of a shock front.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
Makoto Miyoshi ◽  
...  

Abstract The Galactic Center IRS 13E cluster is a very intriguing infrared object located at ${\sim } 0.13$ pc from Sagittarius A$^\ast$ (Sgr A$^\ast$) in projection distance. There are arguments both for and against the hypothesis that a dark mass like an intermediate mass black hole (IMBH) exists in the cluster. We recently detected the rotating ionized gas ring around IRS 13E3, which belongs to the cluster, in the H30$\alpha$ recombination line using ALMA. The enclosed mass is derived to be $M_{\mathrm{encl.}}\simeq 2\times 10^{4}\, M_\odot$, which agrees with an IMBH and is barely less than the astrometric upper limit mass of an IMBH around Sgr A$^\ast$. Because the limit mass depends on the true three-dimensional (3D) distance from Sgr A$^\ast$, it is very important to determine it observationally. However, the 3D distance is indefinite because it is hard to determine the line-of-sight (LOS) distance by usual methods. We attempt here to estimate the LOS distance from spectroscopic information. The CH$_3$OH molecule is easily destroyed by the cosmic rays around Sgr A$^{\ast }$. However, we detected a highly excited CH$_3$OH emission line in the ionized gas stream associated with IRS 13E3. This indicates that IRS 13E3 is located at $r\gtrsim 0.4$ pc from Sgr A$^{\ast }$.


1979 ◽  
Vol 84 ◽  
pp. 401-404
Author(s):  
B. Paczyński ◽  
V. Trimble

There is a reasonable chance of finding a (probably X-ray) pulsar in a short-period orbit around the galactic center. Such a pulsar can provide a test distinguishing a central black hole from a supermassive object or spinar. It also makes available a good clock in a region of space in which GM/Rc2 is much larger than solar system values, thus allowing strong-field tests of general relativity.


2012 ◽  
Vol 8 (S287) ◽  
pp. 449-454
Author(s):  
Loránt O. Sjouwerman ◽  
Ylva M. Pihlström

AbstractWe report on 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) region with the Expanded Very Large Array (EVLA). At least three different maser transitions tracing shocked regions in the cm-wave radio regime can be found in Sgr A. 44 GHz masers correlate with the positions and velocities of 36 GHz CH3OH masers, but the methanol masers correlate less with 1720 MHz OH masers. Our results agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under cooler or denser conditions. We speculate that the geometry of the bright 36 GHz masers in Sgr A East outlines the location of a SNR shock front.


2007 ◽  
Vol 3 (S248) ◽  
pp. 204-205
Author(s):  
J. Li ◽  
Z. Q. Shen ◽  
A. Miyazaki ◽  
M. Miyoshi ◽  
T. Tsutsumi ◽  
...  

AbstractWe have performed monitoring observations of the 3-mm flux density toward the Galactic center compact radio source Sgr A* with the ATCA since 2005 October. It has been found that during several observing epochs Sgr A* was quite active, showing significant intraday variation. Here we report the detection of an IDV in Sgr A* on 2006 August 13, which exhibits a 27% fractional variation in about 2 hrs.


2020 ◽  
Vol 500 (4) ◽  
pp. 4866-4877
Author(s):  
A S Andrianov ◽  
A M Baryshev ◽  
H Falcke ◽  
I A Girin ◽  
T de Graauw ◽  
...  

ABSTRACT High-resolution imaging of supermassive black hole shadows is a direct way to verify the theory of general relativity under extreme gravity conditions. Very Long Baseline Interferometry (VLBI) observations at millimetre/submillimetre wavelengths can provide such angular resolution for the supermassive black holes located in Sgr A* and M87. Recent VLBI observations of M87 with the Event Horizon Telescope (EHT) have shown such capabilities. The maximum obtainable spatial resolution of the EHT is limited by the Earth's diameter and atmospheric phase variations. In order to improve the image resolution, longer baselines are required. The Radioastron space mission successfully demonstrated the capabilities of space–Earth VLBI with baselines much longer than the Earth's diameter. Millimetron is the next space mission of the Russian Space Agency and will operate at millimetre wavelengths. The nominal orbit of the observatory will be located around the Lagrangian L2 point of the Sun–Earth system. In order to optimize the VLBI mode, we consider a possible second stage of the mission that could use a near-Earth high elliptical orbit (HEO). In this paper, a set of near-Earth orbits is used for synthetic space–Earth VLBI observations of Sgr A* and M87 in a joint Millimetron and EHT configuration. General relativistic magnetohydrodynamic models for the supermassive black hole environments of Sgr A* and M87 are used for static and dynamic imaging simulations at 230 GHz. A comparison preformed between ground and space–Earth baselines demonstrates that joint observations with Millimetron and EHT significantly improve the image resolution and allow the EHT + Millimetron to obtain snapshot images of Sgr A*, probing the dynamics at fast time-scales.


2019 ◽  
Vol 621 ◽  
pp. A119 ◽  
Author(s):  
Christiaan D. Brinkerink ◽  
Cornelia Müller ◽  
Heino D. Falcke ◽  
Sara Issaoun ◽  
Kazunori Akiyama ◽  
...  

Context. The compact radio source Sagittarius A∗ (Sgr A∗) in the Galactic centre is the primary supermassive black hole candidate. General relativistic magnetohydrodynamical (GRMHD) simulations of the accretion flow around Sgr A∗ predict the presence of sub-structure at observing wavelengths of ∼3 mm and below (frequencies of 86 GHz and above). For very long baseline interferometry (VLBI) observations of Sgr A∗ at this frequency the blurring effect of interstellar scattering becomes sub-dominant, and arrays such as the high sensitivity array (HSA) and the global mm-VLBI array (GMVA) are now capable of resolving potential sub-structure in the source. Such investigations help to improve our understanding of the emission geometry of the mm-wave emission of Sgr A∗, which is crucial for constraining theoretical models and for providing a background to interpret 1 mm VLBI data from the Event Horizon Telescope (EHT). Aims. Following the closure phase analysis in our first paper, which indicates asymmetry in the 3 mm emission of Sgr A∗, here we have used the full visibility information to check for possible sub-structure. We extracted source size information from closure amplitude analysis, and investigate how this constrains a combined fit of the size-frequency relation and the scattering law for Sgr A∗. Methods. We performed high-sensitivity VLBI observations of Sgr A∗ at 3 mm using the Very Long Baseline Array (VLBA) and the Large Millimeter Telescope (LMT) in Mexico on two consecutive days in May 2015, with the second epoch including the Greenbank Telescope (GBT). Results. We confirm the asymmetry for the experiment including GBT. Modelling the emission with an elliptical Gaussian results in significant residual flux of ∼10 mJy in south-eastern direction. The analysis of closure amplitudes allows us to precisely constrain the major and minor axis size of the main emission component. We discuss systematic effects which need to be taken into account. We consider our results in the context of the existing body of size measurements over a range of observing frequencies and investigate how well-constrained the size-frequency relation is by performing a simultaneous fit to the scattering law and the size-frequency relation. Conclusions. We find an overall source geometry that matches previous findings very closely, showing a deviation in fitted model parameters less than 3% over a time scale of weeks and suggesting a highly stable global source geometry over time. The reported sub-structure in the 3 mm emission of Sgr A∗ is consistent with theoretical expectations of refractive noise on long baselines. However, comparing our findings with recent results from 1 mm and 7 mm VLBI observations, which also show evidence for east-west asymmetry, we cannot exclude an intrinsic origin. Confirmation of persistent intrinsic substructure will require further VLBI observations spread out over multiple epochs.


2009 ◽  
Vol 5 (S261) ◽  
pp. 271-276 ◽  
Author(s):  
Vincent L. Fish ◽  
Sheperd S. Doeleman

AbstractVery strong evidence suggests that Sagittarius A*, a compact radio source at the center of the Milky Way, marks the position of a super massive black hole. The proximity of Sgr A* in combination with its mass makes its apparent event horizon the largest of any black hole candidate in the universe and presents us with a unique opportunity to observe strong-field GR effects. Recent millimeter very long baseline interferometric observations of Sgr A* have demonstrated the existence of structures on scales comparable to the Schwarzschild radius. These observations already provide strong evidence in support of the existence of an event horizon. (Sub)Millimeter VLBI observations in the near future will combine the angular resolution necessary to identify the overall morphology of quiescent emission, such as an accretion disk or outflow, with a fine enough time resolution to detect possible periodicity in the variable component of emission. In the next few years, it may be possible to identify the spin of the black hole in Sgr A*, either by detecting the periodic signature of hot spots at the innermost stable circular orbit or parameter estimation in models of the quiescent emission. Longer term, a (sub)millimeter VLBI “Event Horizon Telescope” will be able to produce images of the Galactic center emission to the see the silhouette predicted by general relativistic lensing. These techniques are also applicable to the black hole in M87, where black hole spin may be key to understanding the jet-launching region.


Sign in / Sign up

Export Citation Format

Share Document