High mass X-ray binaries: Beacons in a stormy universe

2018 ◽  
Vol 14 (S346) ◽  
pp. 489-499
Author(s):  
Douglas R. Gies

AbstractThe discovery of gravity waves from the mergers of black hole binaries has focused the astronomical community on the high mass X-ray binaries (HMXBs) as the potential progenitors of close pairs of compact stars. This symposium gathered experts in observational and theoretical work for a very timely review of our understanding of the processes that drive the X-ray luminosity of the diverse kinds of binaries and what evolutionary stages are revealed in the observed cases. Here I offer a condensed summary of some of the results about massive star properties, the observational categories of HMXBs, their accretion processes, their numbers in the Milky Way and other galaxies, and how they may be related to the compact binaries that merge in a burst of gravity waves.

2018 ◽  
Vol 14 (S346) ◽  
pp. 417-425 ◽  
Author(s):  
Jakub Klencki ◽  
Gijs Nelemans

AbstractX-ray binaries with black hole (BH) accretors and massive star donors at short orbital periods of a few days can evolve into close binary BH (BBH) systems that merge within the Hubble time. From an observational point of view, upon the Roche-lobe overflow such systems will most likely appear as ultra-luminous X-ray sources (ULXs). To study this connection, we compute the mass transfer phase in systems with BH accretors and massive star donors (M > 15 Mʘ) at various orbital separations and metallicities. In the case of core-hydrogen and core-helium burning donors (cases A and C of mass transfer) we find the typical duration of super-Eddington mass transfer of up to 106 and 105 yr, with rates of 10−6 and 10−5Mʘ yr-1, respectively. Given that roughly 0.5 ULXs are found per unit of star formation rate, we estimate the rate of BBH mergers from stable mass transfer evolution to be at most 10 Gpc−3 yr−1.


1996 ◽  
Vol 165 ◽  
pp. 93-103
Author(s):  
Roger W. Romani

The presence of accreting black holes (BH) among the X-ray binaries has been recognized for many years. Traditionally, Cyg X-1 and the handful of other candidates have been thought of as cousins of the HMXB neutron star systems. Recent studies of the soft X-ray transients such as A 0620-00 have, however, shown that the dynamical evidence makes these low-mass systems very strong black-hole candidates. Further, analysis of the eventual end-states of various high-mass X-ray binaries suggest that some could end as observable BH-pulsar binaries, although the first such system is yet to be discovered.


Author(s):  
Nicolas Scepi ◽  
Mitchell C Begelman ◽  
Jason Dexter

Abstract Dwarf novæ (DNe) and low mass X-ray binaries (LMXBs) are compact binaries showing variability on time scales from years to less than seconds. Here, we focus on explaining part of the rapid fluctuations in DNe, following the framework of recent studies on the monthly eruptions of DNe that use a hybrid disk composed of an outer standard disk and an inner magnetized disk. We show that the ionization instability, that is responsible for the monthly eruptions of DNe, is also able to operate in the inner magnetized disk. Given the low density and the fast accretion time scale of the inner magnetized disk, the ionization instability generates small, rapid heating and cooling fronts propagating back and forth in the inner disk. This leads to quasi-periodic oscillations (QPOs) with a period of the order of 1000 s. A strong prediction of our model is that these QPOs can only develop in quiescence or at the beginning/end of an outburst. We propose that these rapid fluctuations might explain a subclass of already observed QPOs in DNe as well as a, still to observe, subclass of QPOs in LMXBs. We also extrapolate to the possibility that the radiation pressure instability might be related to Type B QPOs in LMXBs.


2012 ◽  
Vol 425 (1) ◽  
pp. 595-604 ◽  
Author(s):  
P. Reig ◽  
J. M. Torrejón ◽  
P. Blay
Keyword(s):  
X Ray ◽  
New Type ◽  

New Astronomy ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. 313-323 ◽  
Author(s):  
G.E. Brown ◽  
C.-H. Lee ◽  
Hans A. Bethe
Keyword(s):  
X Ray ◽  
Low Mass ◽  

2003 ◽  
Vol 214 ◽  
pp. 215-217
Author(s):  
Q. Z. Liu ◽  
X. D. Li ◽  
D. M. Wei

The relation between the spin period (Ps) and the orbital period (Po) in high-mass X-ray binaries (HMXBs) is investigated. In order for Be/X-ray binaries to locate above the critical line of observable X-ray emission due to accretion, it is necessary for an intermediate orbital eccentricity to be introduced. We suggest that some peculiar systems in the Po − Ps diagram are caused by their peculiar magnetic fields.


2016 ◽  
Vol 12 (S329) ◽  
pp. 355-358
Author(s):  
Peter Kretschmar ◽  
Silvia Martínez-Núñez ◽  
Enrico Bozzo ◽  
Lidia M. Oskinova ◽  
Joachim Puls ◽  
...  

AbstractStrong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretor’s gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.


Sign in / Sign up

Export Citation Format

Share Document