The high transverse velocity stars in Gaia-LAMOST

2019 ◽  
Vol 14 (S353) ◽  
pp. 59-60
Author(s):  
João A. S. Amarante ◽  
Martin C. Smith ◽  
Corrado Boeche

AbstractAlthough the stellar halo accounts for just ∼1% of the total stellar mass of the Milky Way, the kinematics of halo stars can tell us a lot about the origins and evolution of our Galaxy. It has been shown that the high transverse velocity stars in Gaia DR2 reveal a double sequence in the Hertzsprung-Russell (HR) diagram, indicating a duality in the local halo within 1 kpc. We fit these stars by updating the popular Besançon/Galaxia model, incorporating the latest observational results for the stellar halo. We are able to obtain a good match to the Gaia data and provide new constraints on the properties of the disc and halo. In particular, we show that the thick disc contribution to this high velocity tail is small, but not negligible, and likely has an influence on the red sequence of the HR diagram.

2020 ◽  
Vol 492 (3) ◽  
pp. 3816-3828 ◽  
Author(s):  
João A S Amarante ◽  
Martin C Smith ◽  
Corrado Boeche

ABSTRACT Although the stellar halo accounts for just ∼1 per cent of the total stellar mass of the Milky Way, the kinematics of halo stars encode valuable information about the origins and evolution of our Galaxy. It has been shown that the high transverse velocity stars in Gaia DR2 reveal a double sequence in the Hertzsprung–Russell (HR) diagram, indicating a bifurcation in the local stellar halo within 1 kpc. We fit these stars by updating the popular Besançon/Galaxia model, incorporating the latest observational results for the stellar halo and an improved kinematic description for the thick disc from Schönrich & Binney (2012). We are able to obtain a good match to the Gaia data and provide new constraints on the properties of the Galactic disc and stellar halo. In particular, we show that the kinematically defined thick-disc contribution to this high velocity tail is $\approx 13{{\ \rm per\ cent}}$. We look in greater detail using chemistry from LAMOST DR5, identifying a population of retrograde stars with thick-disc chemistry. Our thick-disc kinematic model cannot account for this population and so we conclude there is likely to be a contribution from heated or accreted stars in the Solar Neighbourhood. We also investigate proposed dynamical substructures in this sample, concluding that they are probably due to resonant orbits rather than accreted populations. Finally, we provide new insights on the nature of the two sequences and their relation with past accretion events and the primordial Galactic disc.


2018 ◽  
Vol 616 ◽  
pp. L9 ◽  
Author(s):  
G. Monari ◽  
B. Famaey ◽  
I. Carrillo ◽  
T. Piffl ◽  
M. Steinmetz ◽  
...  

We measure the escape speed curve of the Milky Way based on the analysis of the velocity distribution of ~2850 counter-rotating halo stars from the Gaia Data Release 2. The distances were estimated through the StarHorse code, and only stars with distance errors smaller than 10% were used in the study. The escape speed curve is measured at Galactocentric radii ranging from ~5 kpc to ~10.5 kpc. The local Galactic escape at the Sun’s position is estimated to be ve(r⊙) = 580 ± 63 km s−1, and it rises towards the Galactic centre. Defined as the minimum speed required to reach three virial radii, our estimate of the escape speed as a function of radius implies for a Navarro–Frenk–White profile and local circular velocity of 240 km s−1 a dark matter mass M200 = 1.28−0.50+0.68 × 1012 M⊙ and a high concentration c200 = 11.09−1.79+2.94. Assuming the mass-concentration relation of ΛCDM, we obtain M200 = 1.55−0.51+0.64 × 1012 M⊙ and c200 = 7.93−0.27+0.33 for a local circular velocity of 228 km s−1.


2004 ◽  
Vol 217 ◽  
pp. 147-153
Author(s):  
B. D. Savage ◽  
B. P. Wakker ◽  
K. R. Sembach ◽  
P. Richter ◽  
M. Meade

We summarize the results of the Far-Ultraviolet Spectroscopic Explorer (FUSE) program to study O VI in the Milky Way halo. Spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI absorption along paths through the Milky Way thick disk/halo and beyond. Strong O VI absorption over the velocity range from −100 to 100 km s−1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T~3×105 K in the Milky Way thick disk/halo. The overall distribution of O VI can be described by a plane-parallel patchy absorbing layer with an average O VI mid-plane density of no(O VI) = 1.7×10−8 cm−3, an exponential scale height of ~2.3 kpc, and a ~0.25 dex excess of O VI in the northern Galactic polar region. Approximately 60 percent of the sky is covered by high velocity O VI with |vLSR|>100 km s−1. This high velocity O VI traces a variety of phenomena in and near the Milky Way including outflowing material from the Milky Way, tidal interactions with the Magellanic Clouds, accretion of gas onto the Milky Way, and warm/hot gas interactions in a highly extended (>70 kpc) Galactic corona or with hot intergalactic gas in the Local Group.


2012 ◽  
Vol 10 (H16) ◽  
pp. 349-349
Author(s):  
Monica Valluri

AbstractThe frequency analysis of the orbits of halo stars and dark matter particles from a cosmological hydrodynamical simulation of a disk galaxy from the MUGS collaboration (Stinson et al. 2010) shows that even if the shape of the dark matter halo is nearly oblate, only about 50% of its orbits are on short-axis tubes, confirming a previous result: under baryonic condensation all orbit families can deform their shapes without changing orbital type (Valluri et al. 2010). Orbits of dark matter particles and halo stars are very similar reflecting their common accretion origin and the influence of baryons. Frequency maps provide a compact representation of the 6-D phase space distribution that also reveals the history of the halo (Valluri et al. 2012). The 6-D phase space coordinates for a large population of halo stars in the Milky Way that will be obtained from future surveys can be used to reconstruct the phase-space distribution function of the stellar halo. The similarity between the frequency maps of halo stars and dark matter particles (Fig. 1) implies that reconstruction of the stellar halo distribution function can reveal the phase space distribution of the unseen dark matter particles and provide evidence for secular evolution. MV is supported by NSF grant AST-0908346 and the Elizabeth Crosby grant.


2019 ◽  
Vol 14 (S353) ◽  
pp. 71-74
Author(s):  
Kaley Brauer ◽  
Alexander P. Ji ◽  
Kohei Hattori ◽  
Sergio Escobar ◽  
Anna Frebel

AbstractThe Milky Way’s stellar halo preserves a fossil record of smaller dwarf galaxies that merged with the Milky Way throughout its formation history. Currently, though, we lack reliable ways to identify which halo stars originated in which dwarf galaxies or even which stars were definitively accreted. Selecting stars with specific chemical signatures may provide a way forward. We investigate this theoretically and observationally for stars with r-process nucleosynthesis signatures. Theoretically, we combine high-resolution cosmological simulations with an empirically-motivated treatment of r-process enhancement. We find that around half of highly r-process-enhanced metal-poor halo stars may have originated in early ultra-faint dwarf galaxies that merged into the Milky Way during its formation. Observationally, we use Gaia DR2 to compare the kinematics of highly r-process-enhanced halo stars with those of normal halo stars. R-process-enhanced stars have higher galactocentric velocities than normal halo stars, suggesting an accretion origin. If r-process-enhanced stars largely originated in accreted ultra-faint dwarf galaxies, halo stars we observe today could play a key role in understanding the smallest building blocks of the Milky Way via this novel approach of chemical tagging


2019 ◽  
Vol 14 (S351) ◽  
pp. 24-33
Author(s):  
Miho N. Ishigaki

AbstractI would like to review recent efforts of detailed chemical abundance measurements for field Milky Way halo stars. Thanks to the advent of wide-field spectroscopic surveys up to a several kpc from the Sun, large samples of field halo stars with detailed chemical measurements are continuously expanding. Combination of the chemical information and full six dimensional phase-space information is now recognized as a powerful tool to identify cosmological accretion events that have built a sizable fraction of the present-day stellar halo. Future observational prospects with wide-field spectroscopic surveys and theoretical prospects with supernova nucleosynthetic yields are also discussed.


1985 ◽  
Vol 106 ◽  
pp. 415-420
Author(s):  
Klaas S. De Boer

The detection in absorption lines of gas clouds outside the galactic plane at high velocities by Münch and Zirin (1961), high velocities then defined as velocities differing by more than 20 km/s from the LSR, showed that the space outside the Milky-Way disk contains not just stars. Of course, from a continuity argument it had been all along clear that some transition zone had to exist between the dense (relatively speaking) gas of the Milky-Way plane and the vast (almost) emptiness of intergalactic space. The presence of these clouds requires a mechanism to prevent their evaporation, and Spitzer (1956) proposed that dilute hot gas had to exist outside the Milky-Way disk reaching, in his hydrostatic-equilibrium model, temperatures of a few million K at several tens of kpc. These high temperatures led him to name these gases the Galactic Corona. Observational confirmation of the abundance of these cool clouds came from the measurements of 21-cm HI emission, but no one-to-one correspondence with clouds detected in the visual did appear (Habing 1969). For the majority of the high-velocity (HV) clouds (Hulsbosch 1978) no distances are known, and all of those are believed to exist as a gaseous halo with the halo stars. Thus our Milky Way appears to have outside the disk: a halo, a gaseous halo, and a corona.


2009 ◽  
Vol 5 (S265) ◽  
pp. 237-240
Author(s):  
Anna Frebel ◽  
Joshua D. Simon ◽  
Evan Kirby ◽  
Marla Geha ◽  
Beth Willman

AbstractWe present Keck/HIRES spectra of six metal-poor stars in two of the ultra-faint dwarf galaxies orbiting the Milky Way, Ursa Major II and Coma Berenices, and a Magellan/MIKE spectrum of a star in the classical dwarf spheroidal galaxy (dSph) Sculptor. Our data include the first high-resolution spectroscopic observations of extremely metal-poor stars ([Fe/H] < −3.0) not belonging to the Milky Way (MW) stellar halo field population. We obtain abundance measurements and upper limits for up to 26 elements between carbon and europium. The stars span a range of −3.8 < [Fe/H] < −2.3, with the ultra-faints having large spreads in Fe. A comparison with MW halo stars of similar metallicity reveals substantial agreement between the abundance patterns of the ultra-faint dwarf galaxies and Sculptor and the MW halo for the light, α and iron-peak elements (C to Zn). This agreement contrasts with the results of earlier studies of more metal-rich stars (−2.5 ≲[Fe/H]≲ −1.0) in more luminous dwarfs, which found significant abundance discrepancies with respect to the MW halo data. The abundances of neutron-capture elements (Sr to Eu) in all three galaxies are extremely low, consistent with the most metal-poor halo stars, but not with the typical halo abundance pattern at [Fe/H]≳ −3.0. Our results are broadly consistent with a galaxy formation model which predicts that massive dwarf galaxies are the source of the metal-rich component ([Fe/H]≳ −2.5) of the MW inner halo, but we propose that dwarf galaxies similar to the dSphs are the primary contributors to the metal-poor end of the metallicity distribution of the MW outer halo.


2015 ◽  
Vol 11 (S317) ◽  
pp. 288-289
Author(s):  
Emily C. Cunningham ◽  
Alis J. Deason ◽  
Puragra Guhathakurta ◽  
Constance M. Rockosi ◽  
Roeland P. van der Marel ◽  
...  

AbstractWe present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = −0.3−0.9+0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.


2015 ◽  
Vol 11 (S317) ◽  
pp. 373-374
Author(s):  
Pim van Oirschot ◽  
Else Starkenburg ◽  
Amina Helmi ◽  
Gijs Nelemans

AbstractWe study the assembly history of the stellar halo of Milky Way-like galaxies using the six high-resolution Aquarius dark matter simulations combined with the Munich-Groningen semi-analytic galaxy formation model. Our goal is to understand the stellar population contents of the building blocks of the Milky Way halo, including their star formation histories and chemical evolution, as well as their internal dynamical properties. We are also interested in how they relate or are different from the surviving satellite population. Finally, we will use our models to compare to observations of halo stars in an attempt to reconstruct the assembly history of the Milky Way's stellar halo itself.


Sign in / Sign up

Export Citation Format

Share Document