scholarly journals Building Blocks of the Milky Way's Stellar Halo

2015 ◽  
Vol 11 (S317) ◽  
pp. 373-374
Author(s):  
Pim van Oirschot ◽  
Else Starkenburg ◽  
Amina Helmi ◽  
Gijs Nelemans

AbstractWe study the assembly history of the stellar halo of Milky Way-like galaxies using the six high-resolution Aquarius dark matter simulations combined with the Munich-Groningen semi-analytic galaxy formation model. Our goal is to understand the stellar population contents of the building blocks of the Milky Way halo, including their star formation histories and chemical evolution, as well as their internal dynamical properties. We are also interested in how they relate or are different from the surviving satellite population. Finally, we will use our models to compare to observations of halo stars in an attempt to reconstruct the assembly history of the Milky Way's stellar halo itself.

2009 ◽  
Vol 5 (S265) ◽  
pp. 237-240
Author(s):  
Anna Frebel ◽  
Joshua D. Simon ◽  
Evan Kirby ◽  
Marla Geha ◽  
Beth Willman

AbstractWe present Keck/HIRES spectra of six metal-poor stars in two of the ultra-faint dwarf galaxies orbiting the Milky Way, Ursa Major II and Coma Berenices, and a Magellan/MIKE spectrum of a star in the classical dwarf spheroidal galaxy (dSph) Sculptor. Our data include the first high-resolution spectroscopic observations of extremely metal-poor stars ([Fe/H] < −3.0) not belonging to the Milky Way (MW) stellar halo field population. We obtain abundance measurements and upper limits for up to 26 elements between carbon and europium. The stars span a range of −3.8 < [Fe/H] < −2.3, with the ultra-faints having large spreads in Fe. A comparison with MW halo stars of similar metallicity reveals substantial agreement between the abundance patterns of the ultra-faint dwarf galaxies and Sculptor and the MW halo for the light, α and iron-peak elements (C to Zn). This agreement contrasts with the results of earlier studies of more metal-rich stars (−2.5 ≲[Fe/H]≲ −1.0) in more luminous dwarfs, which found significant abundance discrepancies with respect to the MW halo data. The abundances of neutron-capture elements (Sr to Eu) in all three galaxies are extremely low, consistent with the most metal-poor halo stars, but not with the typical halo abundance pattern at [Fe/H]≳ −3.0. Our results are broadly consistent with a galaxy formation model which predicts that massive dwarf galaxies are the source of the metal-rich component ([Fe/H]≳ −2.5) of the MW inner halo, but we propose that dwarf galaxies similar to the dSphs are the primary contributors to the metal-poor end of the metallicity distribution of the MW outer halo.


2012 ◽  
Vol 10 (H16) ◽  
pp. 372-372
Author(s):  
Rok Roškar

AbstractIn recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.


2019 ◽  
Vol 14 (S353) ◽  
pp. 71-74
Author(s):  
Kaley Brauer ◽  
Alexander P. Ji ◽  
Kohei Hattori ◽  
Sergio Escobar ◽  
Anna Frebel

AbstractThe Milky Way’s stellar halo preserves a fossil record of smaller dwarf galaxies that merged with the Milky Way throughout its formation history. Currently, though, we lack reliable ways to identify which halo stars originated in which dwarf galaxies or even which stars were definitively accreted. Selecting stars with specific chemical signatures may provide a way forward. We investigate this theoretically and observationally for stars with r-process nucleosynthesis signatures. Theoretically, we combine high-resolution cosmological simulations with an empirically-motivated treatment of r-process enhancement. We find that around half of highly r-process-enhanced metal-poor halo stars may have originated in early ultra-faint dwarf galaxies that merged into the Milky Way during its formation. Observationally, we use Gaia DR2 to compare the kinematics of highly r-process-enhanced halo stars with those of normal halo stars. R-process-enhanced stars have higher galactocentric velocities than normal halo stars, suggesting an accretion origin. If r-process-enhanced stars largely originated in accreted ultra-faint dwarf galaxies, halo stars we observe today could play a key role in understanding the smallest building blocks of the Milky Way via this novel approach of chemical tagging


2019 ◽  
Vol 14 (S351) ◽  
pp. 24-33
Author(s):  
Miho N. Ishigaki

AbstractI would like to review recent efforts of detailed chemical abundance measurements for field Milky Way halo stars. Thanks to the advent of wide-field spectroscopic surveys up to a several kpc from the Sun, large samples of field halo stars with detailed chemical measurements are continuously expanding. Combination of the chemical information and full six dimensional phase-space information is now recognized as a powerful tool to identify cosmological accretion events that have built a sizable fraction of the present-day stellar halo. Future observational prospects with wide-field spectroscopic surveys and theoretical prospects with supernova nucleosynthetic yields are also discussed.


2009 ◽  
Vol 5 (S262) ◽  
pp. 240-243
Author(s):  
Nelson Padilla ◽  
Claudia Lagos ◽  
Sofía Cora

AbstractA semi-analytic model of galaxy formation with and without active galactic nuclei feedback is used to study the nature of possible building blocks (BBs) of z = 0 galaxies, including those of Milky-Way types. We find that BBs can show an important range of properties arising from environmental variables such as host halo mass, and whether a galaxy is a satellite within its host halo; the stellar formation histories are comparatively faster and the chemical enrichment is more efficient in BBs than in surviving satellites, in accordance with recent metallicity measurements for the Milky Way. These results can be used in combination with observational constraints to continue probing the ability of the cold dark-matter scenario to reproduce the history of galaxy demography in the Universe.


2008 ◽  
Vol 4 (S258) ◽  
pp. 11-22 ◽  
Author(s):  
Rosemary F. G. Wyse

AbstractThe star-formation histories of the main stellar components of the Milky Way constrain critical aspects of galaxy formation and evolution. I discuss recent determinations of such histories, together with their interpretation in terms of theories of disk galaxy evolution.


2008 ◽  
Vol 4 (S255) ◽  
pp. 330-335
Author(s):  
Yutaka Komiya ◽  
Takuma Suda ◽  
Asao Habe ◽  
Masayuki Fujimoto

AbstractExtremely metal-poor (EMP) stars are thought to be formed in the low-mass protogalaxies as building blocks of the Milky Way and can be probes to investigate the early stage of galaxy formation and star formation in the early universe. We study the formation history of EMP stars in the Milky Way halo using a new model of chemical evolution based on the hierarchical theory of the galaxy formation. We construct the merging history of the Milky Way halo based on the extended Press-Schechter formalism, and follow the star formation and chemical evolution along the merger tree. The abundance trends and number of low-mass stars predicted in our model are compared with those of observed EMP stars. Additionally, in order to clarify the origin of hyper metal poor stars, we investigate the change of the surface metal abundances of stars by accretion of interstellar matter. We also investigate the pre-enrichment of intergalactic matter by the first supernovae.


2020 ◽  
Vol 492 (3) ◽  
pp. 3631-3646 ◽  
Author(s):  
J Ted Mackereth ◽  
Jo Bovy

ABSTRACT The stellar mass in the halo of the Milky Way is notoriously difficult to determine, owing to the paucity of its stars in the solar neighbourhood. With tentative evidence from Gaia that the nearby stellar halo is dominated by a massive accretion event – referred to as Gaia-Enceladus or Sausage – these constraints are now increasingly urgent. We measure the mass in kinematically selected mono-abundance populations (MAPs) of the stellar halo between −3 &lt; [Fe/H] &lt; −1 and 0.0 &lt; [Mg/Fe] &lt; 0.4 using red giant star counts from APOGEE DR14. We find that MAPs are well fit by single power laws on triaxial ellipsoidal surfaces, and we show that that the power-law slope α changes such that high [Mg/Fe] populations have α ∼ 4, whereas low [Mg/Fe] MAPs are more extended with shallow slopes, α ∼ 2. We estimate the total stellar mass to be $M_{*,\mathrm{tot}} = 1.3^{+0.3}_{-0.2}\times 10^{9}\ \mathrm{M_{\odot}}$, of which we estimate ${\sim}0.9^{+0.2}_{-0.1} \times 10^{9}\ \mathrm{M_{\odot}}$ to be accreted. We estimate that the mass of accreted stars with e &gt; 0.7 is M*,accreted, e &gt; 0.7 = 3 ± 1 (stat.) ± 1 (syst.) × 108 M⊙, or ${\sim}30{-}50{{\ \rm per\ cent}}$ of the accreted halo mass. If the majority of these stars are the progeny of a massive accreted dwarf, this places an upper limit on its stellar mass, and implies a halo mass for the progenitor of ∼1010.2 ± 0.2 M⊙. This constraint not only shows that the Gaia-Enceladus/Sausage progenitor may not be as massive as originally suggested, but that the majority of the Milky Way stellar halo was accreted. These measurements are an important step towards fully reconstructing the assembly history of the Milky Way.


2004 ◽  
Vol 21 (4) ◽  
pp. 379-381
Author(s):  
Matthew Coleman

AbstractRecent years have seen a series of large-scale photometric surveys with the aim of detecting substructure in nearby dwarf galaxies. Some of these objects display a varying distribution of each stellar population, reflecting their star formation histories. Also, dwarf galaxies are dominated by dark matter, therefore luminous substructure may represent a perturbation in the underlying dark material. Substructure can also be the effect of tidal interaction, such as the disruption of the Sagittarius dSph by the Milky Way. Therefore, substructure in dwarf galaxies manifests the stellar, structural, and kinematic evolution of these objects.


2017 ◽  
Vol 13 (S334) ◽  
pp. 29-33
Author(s):  
Baslio Santiago ◽  
Elmer Luque ◽  
Adriano Pieres ◽  
Anna Bárbara Queiroz

AbstractThe stellar spheroidal components of the Milky-Way contain the oldest and most metal poor of its stars. Inevitably the processes governing the early stages of Galaxy evolution are imprinted upon them. According to the currently favoured hierarchical bottom-up scenario of galaxy formation, these components, specially the Galactic halo, are the repository of most of the mass built up from accretion events in those early stages. These events are still going on today, as attested by the long stellar streams associated to the Sagittarius dwarf galaxy and several other observed tidal substructure, whose geometry, extent, and kinematics are important constraints to reconstruct the MW gravitational potential and infer its total (visible + dark) mass. In addition, the remaining system of MW satellites is expected to be a fossil record of the much larger population of Galactic building blocks that once existed and got accreted. For all these reasons, it is crucial to unravel as much of this remaining population as possible, as well as the current stellar streams that orbit within the halo. The best bet to achieve this task is to carry out wide, deep, and multi-band photometric surveys that provide homogeneous stellar samples. In this contribution, we summarize the results of several years of work towards detecting and characterizing distant MW stellar systems, star clusters and dwarf spheroidals alike, with an emphasis on the analysis of data from the Dark Energy Survey (DES). We argue that most of the volume in distance, size and luminosity space, both in the Galaxy and in the Clouds, is still unprobed. We then discuss the perspectives of exploring this outer MW volume using the current surveys, as well as other current and future surveys, such as the Large Synoptic Survey Telescope (LSST).


Sign in / Sign up

Export Citation Format

Share Document