scholarly journals Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Kai Wang ◽  
Xiao-Lu Jin ◽  
Xiao-Ge Shen ◽  
Li-Ping Sun ◽  
Li-Ming Wu ◽  
...  

Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivatedEscherichia coli,andStaphylococcus aureusexhibited significant decreases in cell viability while TNF-αand lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-αmRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.

2019 ◽  
Vol 86 (2) ◽  
pp. 177-180
Author(s):  
Jacqueline P. Kurz ◽  
Mark P. Richards ◽  
Matthew Garcia ◽  
Zhongde Wang

AbstractThis Research Communication addresses the hypothesis that exogenously administered phospholipase A2 (PLA2) affects the inflammatory responses of bovine mammary epithelial cells (bMEC) in vitro with the aim of providing preliminary justification of investigation into the uses of exogenously administered PLA2 to manage or treat bovine mastitis. Primary bMEC lines from 11 lactating Holstein dairy cows were established and the expression of 14 pro-inflammatory genes compared under unchallenged and lipopolysaccharide (LPS)-challenged conditions, with and without concurrent treatment with bovine pancreatic PLA2G1B, a secreted form of PLA2. No differences in the expression of these genes were noted between PLA2-treated and untreated bMEC under unchallenged conditions. Following LPS challenge, untreated bMEC exhibited significant downregulation of CXCL8, IL1B, CCL20, and CXCL1. In contrast, PLA2-treated bMEC exhibited significant downregulation of IL1B and CCL20 only. These findings indicate that exogenous PLA2 affects the expression of some pro-inflammatory factors in immune-stimulated bMEC, but does not influence the constitutive expression of these factors. Further investigation of the influence of exogenous PLA2 in the bovine mammary gland is justified.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 842 ◽  
Author(s):  
Lingling Sun ◽  
Fang Wang ◽  
Zhaohai Wu ◽  
Lu Ma ◽  
Craig Baumrucker ◽  
...  

Oxidative stress can cause cell damage. Hydroxy-selenomethionine (HMSeBA) is an organic Se source with emerging antioxidant advantages. The objective of this study was to compare the effects of HMSeBA, selenomethionine (SeMet) and sodium selenite (SS) on the antioxidant response and the ability to resist oxidative stress in bovine mammary epithelial cells (BMEC). The BMEC were treated with 0 (Control), 20, 50, 100 and 150 nM HMSeBA, 100 nM SeMet and100 nM SS for 48 h. The results showed that HMSeBA and SeMet treatments had higher glutathione peroxidase (p < 0.01) and catalase (p = 0.01) activities and mRNA abundance of GPX3 (p = 0.02), but lower superoxide dismutase activity compared with SS (p = 0.04). The catalase activity (p < 0.05) and mRNA abundance of GPX3 (p = 0.04) changed in a quadratic manner with the increase of HMSeBA levels. To assess the potential protection of different Se sources against oxidative stress on BMEC, 0 or 50 μM H2O2 was added to BMEC culture for 3 h after Se pre-treatment for 48 h. The results showed that HMSeBA and SeMet, which did not differ (p > 0.05), but further decreased malondialdehyde and reactive oxygen species production compared with SS (p < 0.05). In conclusion, HMSeBA showed an enhanced cellular antioxidant status to resist oxidative damage induced by H2O2 when compared with SS, whereas the effects were similar to SeMet.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mingjiang Liu ◽  
Guoqing Fang ◽  
Shaojie Yin ◽  
Xin Zhao ◽  
Chi Zhang ◽  
...  

In our previous study, lipopolysaccharide (LPS) significantly reduced the cell viability of primary bovine mammary epithelial cells (bMEC) leading to cell apoptosis, which were prevented by caffeic acid (CA) through inhibiting NF-κB activation and reducing proinflammatory cytokine expression. While the underlying mechanism remains unclear, here, we determined that LPS induced the extensive microstructural damage of bMEC, especially the mitochondria and endoplasmic reticulum. Then, the obvious reduction of mitochondrial membrane potential and expression changes of apoptosis-associated proteins (Bcl-2, Bax, and casepase-3) indicated that apoptosis signaling through the mitochondria should be responsible for the cell viability decrease. Next, the high-throughput cDNA sequencing (RNA-Seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were employed to verify that the MAPK and JAK-STAT signaling pathways also were the principal targets of LPS. Following, the critical proteins (ERK, JNK, p38, and c-jun) of the MAPK signaling pathways were activated, and the release of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) regulated by NF-κB and MAPKs was significantly increased, which can promote a cascade of inflammation that induces cell injury and apoptosis. Meanwhile, CA significantly inhibited the activation of MAPKs and the release of proinflammatory cytokines in a dose-dependent manner, which were similar to its effects on the NF-κB activation that we previously published. So we concluded that CA regulates the proteins located in the upstream of multiple cell signal pathways which can reduce the LPS-induced activation of NF-κB and MAPKs, thus weakening the inflammatory response and maintaining cell structure and function, which accordingly inhibit apoptosis.


2018 ◽  
Vol 49 (2) ◽  
pp. 479-488 ◽  
Author(s):  
Caihong Wang ◽  
Fengqi Zhao ◽  
Jianxin Liu ◽  
Hongyun Liu

Background/Aims: The aim of this study was to investigate the transport properties and utilization of methionyl-methionine dipeptide (Met-Met) in β-casein (β-CN) synthesis in bovine mammary epithelial cells (BMECs). Methods: The transport properties were studied for the effects of time, pH, concentration, temperature and inhibitors using Met-Met-FITC in BMECs. BMECs were treated with different concentrations of Met-Met (0, 20, 40, 80, 120 and 160 µg/ml). In several experiments, the cells were treated with Janus kinase 2 (JAK2) inhibitor (tyrphostin AG-490, 50 µM) and mammalian target of rapamycin (mTOR) inhibitor (rapamycin, 100 ng/ml). Results: The uptake of Met-Met-FITC by BMECs was rapid during the first fifteen minutes and became saturated after 15 minutes. The transport of Met-Met-FITC in BMECs exhibited a Michaelis constant of 52.4 µM and maximum transport velocity of 14.8 pmol/min/mg protein. The uptake of Met-Met-FITC in BMECs was pH-dependent, peaked at pH 6.5 and was significantly inhibited by other peptides, including Met-Lys, Lys-Lys, Gly-Met, Gly-Leu and Met-Leu. Knocking down the peptide transporter 2 (PepT2) with small interference RNA markedly decreased Met-Met-FITC uptake. Met-Met concentration-dependently increased the PepT2 expression and β-CN synthesis in BMECs with an optimal concentration of 80 µg/ml. At 80 µg/ml, Met-Met also enhanced the cell viability and cyclin D1 expression and promoted cell cycle transition from G1 phase to S phase. In addition, 80 µg/ml Met-Met increased the mRNA abundance of JAK2 and signal transducer and activator of transcription 5 (STAT5) and enhanced the phosphorylation of JAK2, STAT5, mTOR, p70 ribosomal S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1. The inhibition of JAK2 and mTOR significantly decreased Met-Met-induced increase in cell viability and β-CN synthesis in BMECs. Conclusion: Our data elucidated the properties of peptide transporter and its effect on β-CN synthesis in BMECs. Met-Met, taken up by PepT2, enhances cell proliferation and promotes β-CN synthesis by activating JAK2-STAT5 and mTOR signaling pathways in BMECs.


2016 ◽  
Vol 26 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Sukyung Kang ◽  
Jae Sung Lee ◽  
Hai Chon Lee ◽  
Michael C. Petriello ◽  
Bae Yong Kim ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yuxiang Shi ◽  
Wenpeng Zhao ◽  
Gang Liu ◽  
Tariq Ali ◽  
Peng Chen ◽  
...  

Abstract Background Klebsiella pneumoniae, an environmental pathogen causing mastitis in dairy cattle, is often resistant to antibiotics. K. pneumoniae was used as the host bacteria to support bacteriophage replication; 2 bacteriophages, CM8-1 and SJT-2 were isolated and considered to have therapeutic potential. In the present study, we determined the ability of these 2 bacteriophages to mitigate cytotoxicity, pathomorphological changes, inflammatory responses and apoptosis induced by K. pneumoniae (bacteriophage to K. pneumoniae MOI 1:10) in bovine mammary epithelial cells (bMECs) cultured in vitro. Results Bacteriophages reduced bacterial adhesion and invasion and cytotoxicity (lactate dehydrogenase release). Morphological changes in bMECs, including swelling, shrinkage, necrosis and hematoxylin and eosin staining of cytoplasm, were apparent 4 to 8 h after infection with K. pneumoniae, but each bacteriophage significantly suppressed damage and decreased TNF-α and IL-1β concentrations. K. pneumoniae enhanced mRNA expression of TLR4, NF-κB, TNF-α, IL-1β, IL-6, IL-8, caspase-3, caspase-9 and cyt-c in bMECs and increased apoptosis of bMECs, although these effects were mitigated by treatment with either bacteriophage for 8 h. Conclusions Bacteriophages CM8-1 and SJT-2 mitigated K. pneumoniae-induced inflammation in bMECs cultured in vitro. Therefore, the potential of these bacteriophages for treating mastitis in cows should be determined in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document