Combined effects of rainfall regime and plot length on runoff and soil loss in the Loess Plateau of China

Author(s):  
Jianbo LIU ◽  
Guangyao GAO ◽  
Shuai WANG ◽  
Bojie FU

ABSTRACTThe purpose of this paper was to study the interaction effects of rainfall regime and slope length on runoff and soil loss under different land uses. Event runoff and soil loss in forest, shrub and grass were measured in plots with lengths of 5, 9 and 13m in the Loess Plateau from 2008 to 2016. A total of 59 erosive rainfall events were recorded and classified into three rainfall regimes. Firstly, the results showed that the runoff coefficient was grass>shrub>forest, and soil loss was grass>forest>shrub, but the differences between forest and shrub in runoff and between grass and forest in soil loss did not reach significant levels. Secondly, rainfall regimes had an important effect on runoff and soil loss under different land uses. The lowest runoff coefficients and the highest soil loss in regime 2 were found in shrub and forest land, respectively, which differed from that of regime 1. In total, rainfall regime 1 had the highest runoff coefficient of 0.84–2.06%, followed by regime 3 with 0.33–0.88% and regime 2 with 0.04–0.06%. Soil loss in forest and grass land had a different order of regime 3>regime 1>regime 2. Thirdly, both the runoff coefficient and soil loss decreased with increasing plot length, while the effect of slope length on runoff/soil loss were influenced by land use type and rainfall regimes.

Author(s):  
Haiyan Fang

Cultivated land plays an important role in water and soil loss in the earth-rocky mountainous region, northern China, however, its responses to soil control measures and rainfall characteristics are still not fully understood. In this study, 85 erosive rainfall events in 2011-2019 were grouped into three types, and the responses of runoff and soil loss on five cultivated plots with different slopes in the upstream catchment of the Miyun Reservoir to soil conservation measures and rainfall regimes were evaluated. Results found that event-averaged runoff depths and soil loss rates on the five plots ranged from 7.05 mm to 0.03 mm and from 300.51 t km-2 to 0.37 t km-2 respectively, depending on rainfall regimes, soil conservation measures, and slope gradients. The high occurring frequency (i.e., 72.94%) rainfall regime A with short rainfall duration (RD), low rainfall amount (P), and high mean rainfall intensity (Im) yielded lower runoff depth and higher soil loss rate. Rainfall regime B with longer RD, and higher P and Im, however, produced higher rainfall depth and lower soil loss rate. Terraced plot had the highest runoff and soil loss reduction efficiencies of over 96.03%. Contour tillage had comparable sediment reduction efficiency to that of the terraced plot on gentle slopes (gradient less than 11.0%), while its runoff reduction efficiency was less than 13.11%. This study implies that in the Miyun Reservoir catchment and similar regions in the world, contour tillage should be promoted on gentle slopes, and terrace construction should be given enough attention since it can greatly reduce water quantity and cause water shortage in downstream catchments.


Author(s):  
Haiyan Fang

Cultivated land plays an important role in water and soil loss in earthy/rocky mountainous regions in northern China, however, its response to soil conservation measures and rainfall characteristics are still not fully understood. In the present study, 85 erosive rainfall events in 2011–2019 were grouped into three types, and the responses of runoff and soil loss to soil conservation measures and rainfall regimes on five cultivated plots with different slopes in the upstream catchment of the Miyun Reservoir were evaluated. Results found that mean event runoff depths and soil loss rates on the five plots ranged from 0.03 mm to 7.05 mm and from 0.37 t km−2 to 300.51 t km−2 respectively, depending on rainfall regimes, soil conservation measures, and slope gradients. The high frequency (i.e., 72.94%) rainfall regime A with a short rainfall duration (RD), low rainfall amount (P), and high mean rainfall intensity (Im) yielded a lower runoff depth and higher soil loss rate. Rainfall regime B with a longer RD, and a higher P and Im, however, produced higher a runoff depth and lower soil loss rate. Terraced plots had the highest runoff and soil loss reduction efficiencies of over 96.03%. Contour tillage had comparable sediment reduction efficiency to that of the terraced plots on gentle slopes (gradient less than 11.0%), while its runoff reduction efficiency was less than 13.11%. This study implies that in the Miyun Reservoir catchment and similar regions in the world, contour tillage should be promoted on gentle slopes, and the construction of terraced plots should be given ample consideration as they could greatly reduce water quantity and cause water shortages in downstream catchments.


2012 ◽  
Vol 9 (3) ◽  
pp. 4193-4233 ◽  
Author(s):  
G. Y. Gao ◽  
B. J. Fu ◽  
Y. H. Lü ◽  
Y. Liu ◽  
S. Wang ◽  
...  

Abstract. Predicting event runoff and soil loss under different land covers is essential to quantitatively evaluate the hydrological responses of vegetation restoration in the Loess Plateau of China. The Soil Conservation Service Curve Number (SCS-CN) and Revised Universal Soil Loss Equation (RUSLE) models are widely used in this region to this end. This study incorporated antecedent moisture condition (AMC) in runoff production and initial abstraction of the SCS-CN model, and considered the direct effect of runoff on event soil loss by adopting a rainfall-runoff erosivity factor in the RUSLE model. The modified SCS-CN and RUSLE models were coupled to link rainfall-runoff-erosion modeling. The effects of AMC, slope gradient and initial abstraction ratio on curve number of SCS-CN, as well as those of vegetation cover on cover-management factor of RUSLE were also considered. Three runoff plot groups covered by sparse young trees, native shrubs and dense tussock, respectively, were established in the Yangjuangou catchment of Loess Plateau. Rainfall, runoff and soil loss were monitored during the rainy season in 2008–2011 to test the applicability of the proposed approach. The original SCS-CN model significantly underestimated the event runoff, especially for the rainfall events that have large 5-day antecedent precipitation, whereas the modified SCS-CN model could predict event runoff well with Nash-Sutcliffe model efficiency (EF) over 0.85. The original RUSLE model overestimated low values of measured soil loss and under-predicted the high values with EF only about 0.30. In contrast to it, the prediction accuracy of the modified RUSLE model improved satisfactorily with EF over 0.70. Our results indicated that the AMC should be explicitly incorporated in runoff production, and direct consideration of runoff should be included in predicting event soil loss. Coupling the modified SCS-CN and RUSLE models appeared to be appropriate for runoff and soil loss simulation at plot scale in the Loess Plateau. The limitations and future study scopes of the proposed models were also indicated.


2012 ◽  
Vol 16 (7) ◽  
pp. 2347-2364 ◽  
Author(s):  
G. Y. Gao ◽  
B. J. Fu ◽  
Y. H. Lü ◽  
Y. Liu ◽  
S. Wang ◽  
...  

Abstract. Predicting event runoff and soil loss under different land covers is essential to quantitatively evaluate the hydrological responses of vegetation restoration in the Loess Plateau of China. The Soil Conservation Service curve number (SCS-CN) and Revised Universal Soil Loss Equation (RUSLE) models are widely used in this region to this end. This study incorporated antecedent moisture condition (AMC) in runoff production and initial abstraction of the SCS-CN model, and considered the direct effect of runoff on event soil loss by adopting a rainfall-runoff erosivity factor in the RUSLE model. The modified SCS-CN and RUSLE models were coupled to link rainfall-runoff-erosion modeling. The effects of AMC, slope gradient and initial abstraction ratio on curve number of SCS-CN, as well as those of vegetation cover on cover-management factor of RUSLE, were also considered. Three runoff plot groups covered by sparse young trees, native shrubs and dense tussock, respectively, were established in the Yangjuangou catchment of Loess Plateau. Rainfall, runoff and soil loss were monitored during the rainy season in 2008–2011 to test the applicability of the proposed approach. The original SCS-CN model significantly underestimated the event runoff, especially for the rainfall events that have large 5-day antecedent precipitation, whereas the modified SCS-CN model was accurate in predicting event runoff with Nash-Sutcliffe model efficiency (EF) over 0.85. The original RUSLE model overestimated low values of measured soil loss and underpredicted the high values with EF values only about 0.30. In contrast, the prediction accuracy of the modified RUSLE model improved with EF values being over 0.70. Our results indicated that the AMC should be explicitly incorporated in runoff production, and direct consideration of runoff should be included when predicting event soil loss. Coupling the modified SCS-CN and RUSLE models appeared to be appropriate for evaluating hydrological effects of restoring vegetation in the Loess Plateau. The main advantages, limitations and future study scopes of the proposed models were also discussed.


2008 ◽  
Vol 51 (3) ◽  
pp. 883-890 ◽  
Author(s):  
G.-H. Zhang ◽  
G.-B. Liu ◽  
K.-M. Tang ◽  
X.-C. Zhang

Author(s):  
Cong WANG ◽  
Shuai WANG ◽  
Bojie FU ◽  
Lu ZHANG ◽  
Nan LU ◽  
...  

ABSTRACTSoil moisture is a key factor in the ecohydrological cycle in water-limited ecosystems, and it integrates the effects of climate, soil, and vegetation. The water balance and the hydrological cycle are significantly important for vegetation restoration in water-limited regions, and these dynamics are still poorly understood. In this study, the soil moisture and water balance were modelled with the stochastic soil water balance model in the Loess Plateau, China. This model was verified by monitoring soil moisture data of black locust plantations in the Yangjuangou catchment in the Loess Plateau. The influences of a rainfall regime change on soil moisture and water balance were also explored. Three meteorological stations were selected (Yulin, Yan'an, and Luochuan) along the precipitation gradient to detect the effects of rainfall spatial variability on the soil moisture and water balance. The results showed that soil moisture tended to be more frequent at low levels with decreasing precipitation, and the ratio of evapotranspiration under stress in response to rainfall also changed from 74.0% in Yulin to 52.3% in Luochuan. In addition, the effects of a temporal change in rainfall regime on soil moisture and water balance were explored at Yan'an. The soil moisture probability density function moved to high soil moisture in the wet period compared to the dry period of Yan'an, and the evapotranspiration under stress increased from 59.5% to 72% from the wet period to the dry period. The results of this study prove the applicability of the stochastic model in the Loess Plateau and reveal its potential for guiding the vegetation restoration in the next stage.


Sign in / Sign up

Export Citation Format

Share Document