Circularly polarized beam-steering antenna array with enhanced characteristics using UCEBG structure

2015 ◽  
Vol 8 (6) ◽  
pp. 955-962
Author(s):  
Tohid Aribi ◽  
Mohammad Naser-Moghadasi ◽  
R. A. Sadeghzadeh

A broadband circularly polarized (CP) beam-steering antenna array is presented. CP antenna is composed of four identical CP slot elements with 2 × 2 configuration and a 4 × 4 feeding network. CP slot element is utilized in array form to improve impedance bandwidth and sequentially rotation method is used to increase axial-ratio bandwidth. Moreover, uni-planer compact electromagnetic band-gap structure is applied to enhance the overall performance of antenna array. Measured results depict that the array has impedance bandwidth over a frequency range of 4.1–7 GHz (~53%) for S11 ≤ −10 dB and 3 dB axial-ratio bandwidth of 1.95 GHz that is between 4.6 and 6.55 GHz (~35%). The antenna array has peak gain of 11 dBi at 5.5 GHz.

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


2013 ◽  
Vol 61 (3) ◽  
pp. 1475-1479 ◽  
Author(s):  
Changrong Liu ◽  
Shaoqiu Xiao ◽  
Yong-Xin Guo ◽  
Yan-Ying Bai ◽  
Bing-Zhong Wang

2017 ◽  
Vol 9 (8) ◽  
pp. 1741-1748 ◽  
Author(s):  
Mahdi Jalali ◽  
Mohammad Naser-Moghadasi ◽  
Ramezan Ali Sadeghzadeh

Wide-band circularly polarized multi-input multi-output (MIMO) antenna array with a 2 × 4 feed network was proposed for C-band application. Different unique techniques were utilized in the proposed array to enhance the antenna characteristics, such as gain, 3 dB axial ratio bandwidth (ARBW), impedance tuning, and ruinous mutual coupling effects. A miniaturized dual-feed Tai chi-shaped antenna element with a pair of feeding points and a pair of eyebrow-shaped strips was presented for enhancing circular polarization (CP) purity and impedance matching. For a better improvement of CP features, a 2*4 MIMO sequentially rotated (MIMO-SR) feed network was used to achieve broader 3 dB ARBW. Besides, the MIMO feature of the feed network could control the left- and right-handed CP, respectively. Ultimately, specific forms of slot and slit structures were applied onto the top layer of MIMO feed network that provided a high isolation between the radiating elements and array network. Furthermore, the diversity gain (DG) was studied. The extracted measured results illustrated an impedance bandwidth of 3.5–8.2 GHz at port 1 and 3.5–8.3 GHz at port 2 for VWSR < 2 and 3 dB ARBW of 4.6–7.6 GHz at port 1 and 4.6–7.5 GHz at port 2. The peak gain of 9.9 dBi was at 6 GHz.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huakang Chen ◽  
Yu Shao ◽  
Zhangjian He ◽  
Changhong Zhang ◽  
Zhizhong Zhang

A 2 × 2 wideband circularly polarized (CP) antenna array operating at millimeter wave (mmWave) band is presented. The array element is a wideband CP Archimedean spiral radiator with special-shaped ring slot. The elements are fed by an unequal amplitude (UA) feeding network based on a microstrip line (MSL) power divider. The side lobe level is improved by this UA feeding network. In addition, a cross slot is employed to isolate the elements for decoupling. A prototype is fabricated, and the measured results show that the proposed array achieves an impedance bandwidth (IBW) of 6.31 GHz (22.5% referring to 28 GHz) and an axial ratio bandwidth (ARBW) of 7.32 GHz (26.1% referring to 28 GHz). The peak gain of the proposed array is 11.3 dBic, and the gain is greater than 9.3 dBic within the whole desired band (from 25 GHz to 31 GHz). The proposed array consists of only one substrate layer and can be built by the conventional printed circuit board technology. Attributed to the characteristics of wide bandwidth, simple structure, low profile, and low cost, the proposed antenna array has a great potential in mmWave wireless communications.


2016 ◽  
Vol 9 (3) ◽  
pp. 705-710 ◽  
Author(s):  
Majid- Fakheri ◽  
Mohammad Naser-Moghadasi ◽  
Ramezan Ali- Sadeghzadeh

This paper presents a new broad band circularly polarized slot antenna array based on substrate-integrated waveguide (SIW) and aperture feeding techniques. The antenna element's impedance and 3 dB axial-ratio (AR) bandwidths are from 8.8 to 10.4 GHz (16.67%) and 9.5–10.7 GHz (12%), respectively. Employing aperture-coupled feed and combining this method with sequentially rotated network, a 2 × 2 antenna array is achieved. Parametric optimization procedure is used to enhance the antenna specifications. In the presented scheme by reducing mutual coupling caused by the SIW technique and sequentially rotated feed network, all parameters of antenna are improved. Consequently a novel antenna array with impedance bandwidth of 2.8 GHz (8.7–11.5 GHz) and 3 dB AR bandwidth of 2.1 GHz (9–11.05 GHz) are obtained. The average gain of the proposed antenna is about 16.7 dBic. A new method is used to increase the gain of antenna array. The extracted result shows that side lob level, mutual coupling, impedance bandwidth, and performance of antenna simultaneously are controlled.


2011 ◽  
Vol 10 ◽  
pp. 1278-1281 ◽  
Author(s):  
Changrong Liu ◽  
Shaoqiu Xiao ◽  
Yong-Xin Guo ◽  
Ming-Chun Tang ◽  
Yan-Ying Bai ◽  
...  

Frequenz ◽  
2019 ◽  
Vol 73 (5-6) ◽  
pp. 153-159
Author(s):  
Zhuo Mu ◽  
Shen-Yun Wang ◽  
Wen-Ying Meng

Abstract This paper reports a novel polarization-reconfigurable antenna array based on the theory of mode combination (MC), which can electronically alter its polarization states between left-hand circular polarization (LCP) mode, right-hand circular polarization (RCP) mode, and two combined linear polarization (LP) modes. The array element is adopted as the L-probes fed circularly-polarized antenna reported by Luk et al. [1]. To verify the concept, a prototype of 2×2 antenna array is manufactured and tested. By properly exciting the feeding probes, four polarization modes can be switchable. Measurement results show that the proposed antenna has an overlapped −10 dB impedance bandwidth around 34 % for both CP modes and LP(2) mode, and an overlapped 3 dB axial-ratio bandwidth around 22.0 % of the CP modes. The average realized gains are around 12.4 dB for CP modes and LP(1) mode, which remain stable in the axial-ratio bandwidth.


2020 ◽  
Vol 10 (1) ◽  
pp. 5104-5107
Author(s):  
R. Swetha ◽  
L. Anjaneyulu

This paper presents a circularly polarized microstrip patch antenna for WiMAX (Worldwide Interoperability for Microwave Access) application with improved impedance bandwidth and axial ratio compared to the existing designs. The antenna is designed at a resonant frequency of 3.56GHz on the FR4 substrate with 2mm thickness. The dimensions of the antenna are 0.35λo×0.35 λo×0.023λo and it is fed through a probe feed. An impedance bandwidth of 360MHz (10.11%) in the frequency range of 3.44GHz−3.8GHz, with a gain of 3.16dBi, axial ratio bandwidth of 1.9% (3.56GHz−3.63GHz) and VSWR<2 are obtained.


Author(s):  
Shilpee Patil ◽  
Alka Verma ◽  
Anil Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
Suresh Kumar

Abstract This study investigates a low-profile circularly polarized (CP) antenna using coplanar waveguide feeding. Rectangular-shaped slots and an inverted L-shaped slit are entrenched into the ground plane to enhance the impedance bandwidth of the antenna. Furthermore, the antenna is implemented with six elliptical electromagnetic band gap structures on its substrate to enhance the −10 dB return loss bandwidth and also to generate CP waves. The experimental and theoretical results closely match each other and indicate that a simple and compact design antenna with dimensions of 0.317λ0 × 0.317λ0 × 0.023λ0(λ0 is the operating wavelength at 4.74 GHz in free space) achieves 36.9% (3.91–5.68 GHz) of the −10 dB return loss bandwidth and 9.98% (4.09–4.52 GHz) of the 3-dB axial ratio bandwidth, thus making it a favorable entrant for radio altimeter and wireless avionics infra-communication systems.


Sign in / Sign up

Export Citation Format

Share Document