A low-profile circularly polarized microstrip antenna using elliptical electromagnetic band gap structure

Author(s):  
Shilpee Patil ◽  
Alka Verma ◽  
Anil Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
Suresh Kumar

Abstract This study investigates a low-profile circularly polarized (CP) antenna using coplanar waveguide feeding. Rectangular-shaped slots and an inverted L-shaped slit are entrenched into the ground plane to enhance the impedance bandwidth of the antenna. Furthermore, the antenna is implemented with six elliptical electromagnetic band gap structures on its substrate to enhance the −10 dB return loss bandwidth and also to generate CP waves. The experimental and theoretical results closely match each other and indicate that a simple and compact design antenna with dimensions of 0.317λ0 × 0.317λ0 × 0.023λ0(λ0 is the operating wavelength at 4.74 GHz in free space) achieves 36.9% (3.91–5.68 GHz) of the −10 dB return loss bandwidth and 9.98% (4.09–4.52 GHz) of the 3-dB axial ratio bandwidth, thus making it a favorable entrant for radio altimeter and wireless avionics infra-communication systems.

Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 651-655 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang

Abstract A novel design of a coplanar waveguide (CPW) feed antenna array with circular polarization (CP) and a high front-to-back ratio is described. The proposed CP array is achieved by using a compact CPW–slotline transition network etched in the ground plane. The measured results show that this kind of feeding method can improve the impedance bandwidth, as well as the axial ratio bandwidth of the CP antenna array and provide adequate gain. The proposed array can achieve a 6.08% impedance bandwidth and a 4.10% CP bandwidth. Details of the antenna design and experimental results are presented and discussed.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


Frequenz ◽  
2020 ◽  
Vol 74 (1-2) ◽  
pp. 41-51
Author(s):  
Alka Verma ◽  
Anil Kumar Singh ◽  
Neelam Srivastava ◽  
Binod Kumar Kanaujia

AbstractIn this article, a new structure comprising of a novel compact slot loaded polarization dependent Electromagnetic Band Gap structure (SLPDEBG), which enhances the performance of circularly polarized rotated square patch antenna by placing SLPDEBG unit cells around it, has been designed. The proposed antenna, having dimensions 0.640 λo x 0.640 λ x 0.0128 λo (λo stands for the free space wavelength at 2.39 GHz), shows that the measured impedance bandwidth and AR bandwidth is 120 MHz and 50 MHz, respectively, with a peak gain of 3.52 dB. Some prominent features of the proposed structure are: front to back ratio of 64, 3 db, beamwidth of 92° at xz-plane and 74° at yz-plane. This prototype antenna finds its application in wireless communication of ISM band. Good performance of the proposed antenna is verified by the close agreement between the simulated and measured results.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wei He ◽  
Yejun He ◽  
Long Zhang ◽  
Sai-Wai Wong ◽  
Wenting Li ◽  
...  

In this paper, a low-profile circularly polarized (CP) conical-beam antenna with a wide overlap bandwidth is presented. Such an antenna is constructed on the two sides of a square substrate. The antenna consists of a wideband monopolar patch antenna fed by a probe in the center and two sets of arc-hook-shaped branches. The monopolar patch antenna is loaded by a set of conductive shorting vias to achieve a wideband vertically polarized electric field. Two sets of arc-hook-shaped parasitic branches connected to the patch and ground plane can generate a horizontally polarized electric field. To further increase the bandwidth of the horizontally polarized electric field, two types of arc-hook-shaped branches with different sizes are used, which can generate another resonant frequency. When the parameters of the arc-hook-shaped branches are reasonably adjusted, a 90° phase difference can be generated between the vertically polarized electric field and the horizontally polarized electric field, so that the antenna can produce a wideband CP radiation pattern with a conical beam. The proposed antenna has a wide impedance bandwidth ( ∣ S 11 ∣ < − 10   dB ) of 35.6% (4.97-7.14 GHz) and a 3 dB axial ratio (AR) bandwidth at phi = 0 ° and theta = 35 ° of about 30.1% (4.97-6.73 GHz). Compared with the earlier reported conical-beam CP antennas, an important feature of the proposed antenna is that the AR bandwidth is completely included in the impedance bandwidth, that is, the overlap bandwidth of ∣ S 11 ∣ < − 10   dB and AR < 3   dB is 30.1%. Moreover, the stable omnidirectional conical-beam radiation patterns can be maintained within the whole operational bandwidth.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4261 ◽  
Author(s):  
Md. Samsuzzaman ◽  
Mohammad Islam

A simple, compact sickle-shaped printed antenna with a slotted ground plane is designed and developed for broadband circularly polarized (CP) radiation. The sickle-shaped radiator with a tapered feed line and circular slotted square ground plane are utilized to realize the wideband CP radiation feature. With optimized dimensions of 0.29λ × 0.29λ × 0.012λ at 2.22 GHz frequency for the realized antenna parameters, the measured results display that the antenna has a 10 dB impedance bandwidth of 7.70 GHz (126.85%; 2.22–9.92 GHz) and a 3 dB axial ratio (AR) bandwidth of 2.64 GHz (73.33%; 2.28–4.92 GHz). The measurement agrees well with simulation, which proves an excellent circularly polarized property. For verification, the mechanism of band improvement and circular polarization are presented, and the parametric study is carried out. Since, the proposed antenna is a simple design structure with broad impedance and AR bandwidth, which is a desirable feature as a candidate for various wireless communication systems. Because of the easy printed structure and scaling the dimension with broadband CP characteristics, the realized antenna does incorporate in a number of CP wireless communication applications.


2012 ◽  
Vol 1 (2) ◽  
pp. 97-106
Author(s):  
Sanyog Rawat ◽  
K K Sharma

In this paper a new geometry of circularly polarized patch antenna is proposed with improved bandwidth. The radiation performance of proposed patch antenna is investigated using IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna. The simulated return loss, axial ratio and impedance with frequency for the proposed antenna are reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slots, the impedance bandwidth can be enhanced upto 10.15% as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.DOI: 10.18495/comengapp.12.097106


Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 343-351 ◽  
Author(s):  
Shilpee Patil ◽  
A. K. Singh ◽  
Binod K. Kanaujia ◽  
R. L. Yadava

Abstract A low profile wide slot antenna for dual band and dual sense circular polarization (CP) is proposed here and is simulated by using HFSS simulation software.The proposed antenna having a C shaped patch for dual band operation and a wide square slot etched on the ground with two strips for CP operation. In between radiating patch and ground plane, designed antenna has a layer of easily available dielectric (FR-4) material. Proposed antenna shows an impedance bandwidth of 13.8 % at 2.38 GHz of centre frequency and 9.7 % at 4.43 GHz of centre frequency for lower and upper band respectively. The 3-dB axial ratio (AR) bandwidths for lower and upper band are 18.8 % (at 2.44 GHz of centre frequency) and 13.3 % (at 4.29 GHz of centre frequency), respectively. The peak gain for the lower and upper band is found as 4.1 dBi and 3.3 dBi, respectively. A close agreement has been found between the simulated and the measured results.


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 317-320
Author(s):  
Saeid Karamzadeh ◽  
Vahid Rafiei ◽  
Hasan Saygin

Abstract In this work circularly polarization diversity has been achieved by utilizing two Schottky diodes on low profile cavity-backed substrate integrated waveguide (CBSIW). In comparison with other studies in the literature, the size of antenna has been reduced to 0.54λg × 0.76λg by helping a 50-Ohm coaxial feed line. The impedance bandwidth, axial ratio bandwidth and antenna gain are improved to 10.02 %, 5.2 % and 7.68dBi, respectively. In addition, the proposed antenna can generate either a left-hand circularly polarized (LHCP) or a right-hand circularly polarized (RHCP) radiation. The developed antenna was fabricated and tested and the achieved results were in good agreement with the simulated one.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hongmei Liu ◽  
Chenhui Xun ◽  
Shaojun Fang ◽  
Zhongbao Wang

A low-profile dual-band circular polarized (CP) patch antenna with wide half-power beamwidths (HPBWs) is presented for CNSS applications. Simple stacked circular patches are used to achieve dual-band radiation. To enhance the HPBW for the two operation bands, a dual annular parasitic metal strip (D-APMS) combined with reduced ground plane (R-GP) is presented. A single-input feed network based on the coupled line transdirectional (CL-TRD) coupler is also proposed to provide two orthogonal modes at the two frequency bands simultaneously. Experimental results show that the 10 dB impedance bandwidth is 32.7%. The 3 dB axial ratio (AR) bandwidths for the lower and upper bands are 4.1% and 6.5%, respectively. At 1.207 GHz, the antenna has the HPBW of 123° and 103° in the xoz and yoz planes, separately. And the values are 127° and 113° at 1.561 GHz.


Sign in / Sign up

Export Citation Format

Share Document