Compact dual-band truncated patch antenna with fractal defected ground structure for wireless applications

2015 ◽  
Vol 9 (1) ◽  
pp. 163-170 ◽  
Author(s):  
B. Rama Sanjeeva Reddy ◽  
D. Vakula

In this paper, a compact, dual-band patch antenna is proposed over Minkowski fractal defected ground structure (DGS) for bandwidth enhancement of global positioning system (GPS) applications. The proposed design combines the truncated dual L-shaped slits cut on diagonal corners of radiating patch and fractal defect on the metallic ground plane. This concept shifts the frequencies to lower bands with improvement in antenna radiation properties. By deploying symmetrical and asymmetrical boundaries to the structure for the fractal DGS on metallic ground plane, improvement in bandwidth and gain are obtained. Compact antenna size is achieved for dual-band GPS frequencies of L1 (1.575 GHz) and L2 (1.227 GHz). The measured results for antenna prototype are (1.2–1.245 GHz): L2 band and (1.51–1.59 GHz): L1 band for 10 dB return loss bandwidth with better pattern radiation. Gain value with and without DGS is observed for compact antenna overall volume of 0.32λ0 × 0.32λ0 × 0.024λ0.

Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents the bandwidth enhancement of a Proximity Coupled Feed Rectangular Microstrip Patch Antenna using a new Defected Ground Structure - an ‘inverted SHA’ shaped slot on the ground plane of the proximity coupled feed rectangular Microstrip patch antenna. The parameters such as Bandwidth, Return loss, VSWR and Radiation efficiency are improved in the proposed antenna than simple proximity coupled feed rectangular Microstrip patch antenna without Defected Ground Structure. A comparison is also shown for the proposed Microstrip patch antenna with the antenna structure without Defected Ground Structure. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 180 MHz. A very good return loss of -47.9223 dB is obtained for the Microstrip patch antenna with an ’inverted SHA’ shaped Defected Ground Structure. Implementing an ‘inverted SHA’ shaped defect in the ground plane of the proximity coupled feed rectangular Microstrip patch antenna results in 5.3% improvement in bandwidth with 16.01% reduction in the overall area of the ground plane as compared to the Microstrip patch antenna without Defected Ground Structure.</p>


2018 ◽  
Vol 7 (3.1) ◽  
pp. 17
Author(s):  
S Leo Pauline ◽  
T R Ganesh Babu

This paper explore about   the micro strip patch antenna design with a defected ground structure (DGS) for dual band operation. The intend of this paper is to design an micro strip antenna, under the frequency at 2.4 GHz and 5.2 GHz that can be utilized for BLUETOOTH and WLAN applications. The feeding technique used here is coaxial feed technique. The above said double band property can be established by etching U-slot in the ground plane. Being periodic structure slot is selected and it is imposed on ground plane. The periodic structures naturally modify the method of propagation of the electromagnetic signal passing on to the antenna. Essentially its core is to vary the parasitic capacitance and inductance of the material through which the substrate is made. This may moreover leads to the reduction in size and progress the performance of the antenna. Micro strip patch antennae are favored due to the fact that these are small in size, inexpensive, consume low power and easy to fabricate and also be designed to meet wide band application requirements.  


A rectangular microstrip patch antenna with defected ground structure with E-shaped and square shaped slot on the patch is proposed here. The proposed antenna design consists of H-shaped defect on the ground plane. The complete antenna system is constructed on 45.4mm X 45.4mm X 1.6mm, FR-4 substrate with dielectric constant of 4.4 and substrate height of 1.6mm. The antenna mainly works in 4-6 GHz band. The various characteristics parameters of the antenna like return loss, voltage standing wave ratio, impedance, gain, bandwidth and radiation pattern are studied. The antenna is simulated using high frequency structured simulator software , simulated < -10dB, in the entire operating range of 4-6 GHz.The proposed antenna design is mainly focused for the wireless applications and is suitable for IEEE 802.11 WLAN standards in the bands 5.2/5.8 GHz and WiMAX standards in the bands at 5.5 GHz. In this design microstrip line feeding is used.


In this paper two element microstrip antenna array with dumbbell shaped defected ground structure (DGS) is on reduction of mutual coupling is presented. The proposed of DGS antenna is simulated by an soft HFSS simulation software. this work is obtain a miniaturized microstrip patch antenna array using DGS for S Band is 2.2GHz.Initally the patch antenna array is designed at C band resonates at 5.2 GHz and the proposed of DGS is integrated in the ground plane of patch antenna for size reduction and this miniaturization is at cost of gain antenna and in order to improve the gain of miniaturized radiator. Patch radiator is further modified to radiation properties, so finally the resonance frequency of an initial microstrip antenna array shifts to 3.75 GHz to 7.15 GHz with the gain of 2.92 dB and its miniaturization performance is up to 63% and its conventional microstrip is successfully accomplished. The prototype antenna is fabricated with the FR-4 substrate and this technique is validate experimentally and measured results with good agreement as stimulated results.


2014 ◽  
Vol 2 (3) ◽  
pp. 51 ◽  
Author(s):  
A. Kandwal ◽  
R. Sharma ◽  
S. K. Khah

A novel gap coupled dual band multiple ring antenna with a defected ground structure (DGS) has been successfully implemented. A different technique is used in this communication where both gap coupling and defected ground are applied to obtain better results for wireless applications. The designed antenna operates in two different frequency bands. The antenna shows a wideband in C-band and also resonates in the X-band. The main parameters like return loss, impedance bandwidth, radiation pattern and gain are presented and discussed. The gain is increased and the side lobe level is considerably reduced to a good extent. Designed antenna is tested and the results show that the simulation and experimental results are in good agreement with each other.


Author(s):  
P Syam Sundar ◽  
Sarat K Kotamraju ◽  
B T P Madhav ◽  
M Sreehari ◽  
K Raghavendra Rao ◽  
...  

In this article a parasitic strip loaded monopole antennas are designed to notch dual and triple bands. The designed models are constructed on one side of the substrate material and on the other end defected ground structures are implemented. The basic antenna comprises a tuning stub and a ground plane with tapered shape slot as DGS. Another model is constructed with circular monopole radiating element on front side and similar kind of ground structure used in the basic rectangular tuning stub antenna. To create notched bands with tuning stubs, two symmetrical parasitic slits are placed inside the slot of the ground plane. The basic model is of the rectangular stub notching triple band and the circular tuning stub antenna notching dual band. Dual band notched circular tuning stub antenna is prototyped on FR4 substrate and measured results from vector network analyzer are compared with simulation results of HFSS for validation.


Sign in / Sign up

Export Citation Format

Share Document