scholarly journals Design and Analysis of Compact Dual Band U-Slot Microstrip Patch Antenna with Defected Ground Structure for Wireless Application

2018 ◽  
Vol 7 (3.1) ◽  
pp. 17
Author(s):  
S Leo Pauline ◽  
T R Ganesh Babu

This paper explore about   the micro strip patch antenna design with a defected ground structure (DGS) for dual band operation. The intend of this paper is to design an micro strip antenna, under the frequency at 2.4 GHz and 5.2 GHz that can be utilized for BLUETOOTH and WLAN applications. The feeding technique used here is coaxial feed technique. The above said double band property can be established by etching U-slot in the ground plane. Being periodic structure slot is selected and it is imposed on ground plane. The periodic structures naturally modify the method of propagation of the electromagnetic signal passing on to the antenna. Essentially its core is to vary the parasitic capacitance and inductance of the material through which the substrate is made. This may moreover leads to the reduction in size and progress the performance of the antenna. Micro strip patch antennae are favored due to the fact that these are small in size, inexpensive, consume low power and easy to fabricate and also be designed to meet wide band application requirements.  

Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2015 ◽  
Vol 9 (1) ◽  
pp. 163-170 ◽  
Author(s):  
B. Rama Sanjeeva Reddy ◽  
D. Vakula

In this paper, a compact, dual-band patch antenna is proposed over Minkowski fractal defected ground structure (DGS) for bandwidth enhancement of global positioning system (GPS) applications. The proposed design combines the truncated dual L-shaped slits cut on diagonal corners of radiating patch and fractal defect on the metallic ground plane. This concept shifts the frequencies to lower bands with improvement in antenna radiation properties. By deploying symmetrical and asymmetrical boundaries to the structure for the fractal DGS on metallic ground plane, improvement in bandwidth and gain are obtained. Compact antenna size is achieved for dual-band GPS frequencies of L1 (1.575 GHz) and L2 (1.227 GHz). The measured results for antenna prototype are (1.2–1.245 GHz): L2 band and (1.51–1.59 GHz): L1 band for 10 dB return loss bandwidth with better pattern radiation. Gain value with and without DGS is observed for compact antenna overall volume of 0.32λ0 × 0.32λ0 × 0.024λ0.


2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Author(s):  
P Syam Sundar ◽  
Sarat K Kotamraju ◽  
B T P Madhav ◽  
M Sreehari ◽  
K Raghavendra Rao ◽  
...  

In this article a parasitic strip loaded monopole antennas are designed to notch dual and triple bands. The designed models are constructed on one side of the substrate material and on the other end defected ground structures are implemented. The basic antenna comprises a tuning stub and a ground plane with tapered shape slot as DGS. Another model is constructed with circular monopole radiating element on front side and similar kind of ground structure used in the basic rectangular tuning stub antenna. To create notched bands with tuning stubs, two symmetrical parasitic slits are placed inside the slot of the ground plane. The basic model is of the rectangular stub notching triple band and the circular tuning stub antenna notching dual band. Dual band notched circular tuning stub antenna is prototyped on FR4 substrate and measured results from vector network analyzer are compared with simulation results of HFSS for validation.


A triple band microstrip-fed patch antenna is presented which contains the radiating structure having rectangular zigzag shape patch and an altered ground structure with a swastic shape design. This modified ground plane actually acts as a defected ground structure (DGS). Both the modified ground plane and radiating patch are perfect electric conductors. The patch is imprinted on a substrate named as Epoxy Glass FR-4 having thickness 1.6 mm, relative permittivity 4.4, and loss tangent 0.0024. The designed microstrip patch antenna (MPA) is able to generate three specific operating bands viz. 11.9–13.6 GHz, 5.71–5.82 GHz, 4.5-4.6 GHz with adequate bandwidth of 1.64 GHz, 110 MHz and 100 MHz and corresponding return loss of -32dB, -23dB, -14.3dB respectively covering Wireless Local Area Network (WLAN), C-band and Ku-band applications. A parametric study has been performed for the rectangular slots located in the patch. Proposed MPA is simulated using Computer Simulation Technology Microwave Studio Version 14.0 (CST MWS V14.0). Lastly, the fabrication of the proposed antenna with optimized parameters has been accomplished and measured results for S-parameter magnitude have been discussed


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents the bandwidth enhancement of a Proximity Coupled Feed Rectangular Microstrip Patch Antenna using a new Defected Ground Structure - an ‘inverted SHA’ shaped slot on the ground plane of the proximity coupled feed rectangular Microstrip patch antenna. The parameters such as Bandwidth, Return loss, VSWR and Radiation efficiency are improved in the proposed antenna than simple proximity coupled feed rectangular Microstrip patch antenna without Defected Ground Structure. A comparison is also shown for the proposed Microstrip patch antenna with the antenna structure without Defected Ground Structure. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 180 MHz. A very good return loss of -47.9223 dB is obtained for the Microstrip patch antenna with an ’inverted SHA’ shaped Defected Ground Structure. Implementing an ‘inverted SHA’ shaped defect in the ground plane of the proximity coupled feed rectangular Microstrip patch antenna results in 5.3% improvement in bandwidth with 16.01% reduction in the overall area of the ground plane as compared to the Microstrip patch antenna without Defected Ground Structure.</p>


2014 ◽  
Vol 4 (3) ◽  
Author(s):  
Sanyog Rawat ◽  
K. Sharma

AbstractA novel design of a circular patch antenna having defected ground structure is presented in this communication. The antenna is designed for C-band applications. A wide bandwidth of 60.3% (4.04–7.28) GHz is obtained in the C-band frequency range 4–8 GHz. It is also found through parametric analysis that shape and dimensions of the finite ground plane and slots in the patch are the key factors in improving the bandwidth of the proposed geometry. The antenna is fabricated using FR-4 substrate and parameters like return loss, VSWR and input impedance are measured experimentally.


In this paper A dual band notched MIMO antennais designed with defected ground structure as ground plane and its characteristics are analyzed. The antenna covers UWB frequency ranging from 3.1-10.6 GHz with single notch band characteristics with maximum gain of 3.7 dB. The antenna provides radiation efficiency of 94% with front to back to ratio of 64%. The simulated studied is carried for many frequency band applications. The designed antenna shows patterns similar to that of a the dipole. The substrate used to design this antenna is FR4 withdimensions of 26mm x40mmx1.6mm and dielectric constant of 4.4.The notch bands are at WLAN and WiMax frequencies.


Sign in / Sign up

Export Citation Format

Share Document