scholarly journals Scanning microwave microscopy of buried CMOS interconnect lines with nanometer resolution

2018 ◽  
Vol 10 (5-6) ◽  
pp. 556-561 ◽  
Author(s):  
Xin Jin ◽  
Kuanchen Xiong ◽  
Roderick Marstell ◽  
Nicholas C. Strandwitz ◽  
James C. M. Hwang ◽  
...  

This paper reports scanning microwave microscopy of CMOS interconnect aluminum lines both bare and buried under oxide. In both cases, a spatial resolution of 190 ± 70 nm was achieved, which was comparable or better than what had been reported in the literature. With the lines immersed in water to simulate high-k dielectric, the signal-to-noise ratio degraded significantly, but the image remained as sharp as before, especially after averaging across a few adjacent scans. These results imply that scanning microwave microscopy can be a promising technique for non-destructive nano-characterization of both CMOS interconnects buried under oxide and live biological samples immersed in water.

Nanoscale ◽  
2014 ◽  
Vol 6 (24) ◽  
pp. 14932-14938 ◽  
Author(s):  
Virgil Optasanu ◽  
Eric Bourillot ◽  
Pauline Vitry ◽  
Cédric Plassard ◽  
Laure Beaurenaut ◽  
...  

An original sub-surface, high spatial resolution tomographic technique based on scanning microwave microscopy (SMM) is used to visualize in-depth materials with different chemical compositions.


AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035114
Author(s):  
Xianfeng Zhang ◽  
Zhe Wu ◽  
Quansong Lan ◽  
Zhiliao Du ◽  
Quanxin Zhou ◽  
...  

2001 ◽  
Vol 671 ◽  
Author(s):  
Michael Gostein ◽  
Paul Lefevre ◽  
Alex A. Maznev ◽  
Michael Joffe

ABSTRACTWe discuss applications of optoacoustic film thickness metrology for characterization of copper chemical-mechanical polishing (CMP). We highlight areas where the use of optoacoustics for CMP characterization provides data complementary to that obtained by other techniques because of its ability to directly measure film thickness with high spatial resolution in a rapid, non-destructive manner. Examples considered include determination of planarization length, measurement of film thickness at intermediate stages of polish, and measurement of arrays of metal lines.


2019 ◽  
Vol 11 (22) ◽  
pp. 2603
Author(s):  
George Xian ◽  
Hua Shi ◽  
Cody Anderson ◽  
Zhuoting Wu

Medium spatial resolution satellite images are frequently used to characterize thematic land cover and a continuous field at both regional and global scales. However, high spatial resolution remote sensing data can provide details in landscape structures, especially in the urban environment. With upgrades to spatial resolution and spectral coverage for many satellite sensors, the impact of the signal-to-noise ratio (SNR) in characterizing a landscape with highly heterogeneous features at the sub-pixel level is still uncertain. This study used WorldView-3 (WV3) images as a basis to evaluate the impacts of SNR on mapping a fractional developed impervious surface area (ISA). The point spread function (PSF) from the Landsat 8 Operational Land Imager (OLI) was used to resample the WV3 images to three different resolutions: 10 m, 20 m, and 30 m. Noise was then added to the resampled WV3 images to simulate different fractional levels of OLI SNRs. Furthermore, regression tree algorithms were incorporated into these images to estimate the ISA at different spatial scales. The study results showed that the total areal estimate could be improved by about 1% and 0.4% at 10-m spatial resolutions in our two study areas when the SNR changes from half to twice that of the Landsat OLI SNR level. Such improvement is more obvious in the high imperviousness ranges. The root-mean-square-error of ISA estimates using images that have twice and two-thirds the SNRs of OLI varied consistently from high to low when spatial resolutions changed from 10 m to 20 m. The increase of SNR, however, did not improve the overall performance of ISA estimates at 30 m.


2021 ◽  
Vol 16 (3) ◽  
pp. 24-27
Author(s):  
E. Obi ◽  
B.O. Sadiq ◽  
O.S . Zakariyya ◽  
A. Theresa

Multiple-input multiple-output (MIMO) systems are increasingly becoming popular due to their ability to multiply data rates without any expansion in the bandwidth. This is critical in this era of high-data rate applications but limited bandwidth. MIMO detectors play an important role in ensuring effective communication in such systems and as such the performance of the following are compared in this paper with respect to symbol error rate (SER) versus signal-to-noise ratio (SNR): maximum likelihood (ML), zero forcing (ZF), minimum mean square error (MMSE) and vertical Bell laboratories layered space time (VBLAST). Results showed that the ML has the best performance as it has the least Symbol Error Rate (SER) for all values of Signal to Noise Ratio (SNR) as it was 91.9% better than MMSE, 99.6% better than VBLAST and 99.8% better than ZF at 20db for a 2x2 antenna configuration., it can also be deduced that the performance increased with increase in number of antenna for all detectors except the V-BLAST detector.


Author(s):  
Timur Gureyev ◽  
David M. Paganin ◽  
Alex Kozlov ◽  
Harry Quiney

Sign in / Sign up

Export Citation Format

Share Document