Wideband tightly-coupled compact array of dipole antennas arranged in triangular lattice

2018 ◽  
Vol 11 (4) ◽  
pp. 382-389
Author(s):  
Abhishek Kumar Awasthi ◽  
A. R. Harish

AbstractIn this paper, a compact wideband tightly-coupled dipole antenna array has been developed. Dipole elements are placed in the triangular lattice to reduce the side lobe level in the radiation pattern of one of the planes. To obtain the initial dimensions, 1-D infinite array analysis of the proposed array is carried out. The infinite array is designed to operate in 5–14.3 GHz (96.3% impedance bandwidth) frequency band. The antenna array can be used in C and X band applications. Inter-element coupling is utilized to achieve ultra-wideband performance in the proposed array. A 2 × 8 elements finite array is designed with the feed network. An ultra-wideband parallel strip to microstrip transition is used to feed the array elements. A metallic shielding for the feed network helps in reducing the back lobes. The overall size of the array with the reflector and the feed network is 148 mm × 224 mm × 54.5 mm. To validate the proposed concept, the antenna array is fabricated and tested. Impedance bandwidth of 2.8:1 along with broadside radiation pattern throughout the band of interest is observed.

2021 ◽  
Vol 36 (6) ◽  
pp. 788-795
Author(s):  
Dalia Elsheakh ◽  
Osama Dardeer

This article presents a 2×1 CPW ultra wideband rectangular slot antenna array (UWB-RSAA) with a modified circular slot shape to support a high data rate for wireless communications applications. The proposed antenna array dimensions are 0.7λ×0.8λo×0.064λo at the resonant frequency 1.8 GHz. It is fabricated on Rogers RO4003 substrate and fed by using a coplanar waveguide (CPW). A graphene layer is added on one side of the substrate to realize frequency reconfigurability and improve the array gain. The proposed array acquires -10 dB impedance bandwidth of the RSAA that extends from 1.7 GHz to 2.6 GHz, from 3.2 to 3.8 GHz, and from 5.2 GHz to 7 GHz. The proposed array achieved a realized peak gain of 7.5 dBi at 6.5 GHz at 0 Volt bias with an average gain of 4.5 dBi over the operating band. When the graphene bias is increased to 20 Volt, the antenna bandwidth extends from 1 GHz to 4 GHz and from 5 to 7 GHz with a peak gain of 14 dBi at 3.5 GHz and an average gain of 7.5 dBi. The linearly polarized operation of the proposed array over the operating bands makes it suitable for short-range wireless communications .


This paper presents a novel, compact Ultra Wide Band , Asymmetric Ring Rectangular Dielectric Resonator Antenna (ARRDRA), which is a unique combination of Thin Dielectric Resonator (DR), Fork shape patch and defective ground structure. The base of the proposed antenna is its Hybrid structure, which generates fundamental TM, TE and higher order modes that yields an impedance bandwidth of 119%. Proposed antenna provides a frequency range from 4.2 to 16.6 GHz with a stable radiation pattern and low cross polarization levels. Peak gain of 5.5 dB and average efficiency of 90% is obtained by the design. Antenna is elongated on a FR4 substrate of dimension 20 x 24x 2.168 mm3 and is particularly suitable for C band INSAT, Radio Altimeter, WLAN, Wi-Fi for high frequencies. Ease in fabrication due to simplicity, compactness, stable radiation pattern throughout the entire bandwidth are the key features of the presented design. Inclusion of Defective ground structure and asymmetric ring not only increases the bandwidth but also stabilize the gain and efficiency due to less surface current. Presented design launch an Ultra Wide Band antenna with sufficient band rejection at 4.48-5.34 and 5.64-8.33 GHz with stable radiation pattern and high gain.


2021 ◽  
Author(s):  
Ali Durmus ◽  
Rifat KURBAN ◽  
Ercan KARAKOSE

Abstract Today, the design of antenna arrays is very important in providing effective and efficient wireless communication. The purpose of antenna array synthesis is to obtain a radiation pattern with low side lobe level (SLL) at a desired half power beam width (HPBW) in far-field. The amplitude and position values ​​of the array elements can be optimized to obtain a radiation pattern with suppressed SLLs. In this paper swarm-based meta-heuristic algorithms such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Mayfly algorithm (MA) and Jellyfish Search (JS) algorithms are compared to realize optimal design of linear antenna arrays. Extensive experiments are conducted on designing 10, 16, 24 and 32-element linear arrays by determining the amplitude and positions. Experiments are repeated 30 times due to the random nature of swarm-based optimizers and statistical results show that performance of the novel algorithms, MA and JS, are better than well-known methods PSO and ABC.


2017 ◽  
Vol 9 (8) ◽  
pp. 1741-1748 ◽  
Author(s):  
Mahdi Jalali ◽  
Mohammad Naser-Moghadasi ◽  
Ramezan Ali Sadeghzadeh

Wide-band circularly polarized multi-input multi-output (MIMO) antenna array with a 2 × 4 feed network was proposed for C-band application. Different unique techniques were utilized in the proposed array to enhance the antenna characteristics, such as gain, 3 dB axial ratio bandwidth (ARBW), impedance tuning, and ruinous mutual coupling effects. A miniaturized dual-feed Tai chi-shaped antenna element with a pair of feeding points and a pair of eyebrow-shaped strips was presented for enhancing circular polarization (CP) purity and impedance matching. For a better improvement of CP features, a 2*4 MIMO sequentially rotated (MIMO-SR) feed network was used to achieve broader 3 dB ARBW. Besides, the MIMO feature of the feed network could control the left- and right-handed CP, respectively. Ultimately, specific forms of slot and slit structures were applied onto the top layer of MIMO feed network that provided a high isolation between the radiating elements and array network. Furthermore, the diversity gain (DG) was studied. The extracted measured results illustrated an impedance bandwidth of 3.5–8.2 GHz at port 1 and 3.5–8.3 GHz at port 2 for VWSR < 2 and 3 dB ARBW of 4.6–7.6 GHz at port 1 and 4.6–7.5 GHz at port 2. The peak gain of 9.9 dBi was at 6 GHz.


2013 ◽  
Vol 427-429 ◽  
pp. 648-651
Author(s):  
Xiao Feng Xiong ◽  
Wei Dong Chen

A novel broad band and wide beam microstrip helical antenna is proposed based on the modification of traditional helical antennas. Through selecting the appropriate operating mode between the axial mode and the normal mode, this new antenna can broad both the beamwidth and the bandwidth. To improve the gain of the antenna, An antenna array with 1*16 elements is designed and fabricated. Meanwhile, cavity-loaded feeding network is utilized for probe station measurement. The simulated impedance and radiation pattern are studied. The proposed antenna shows a wide impedance bandwidth from 7.6GHz to 9.6GHz for |S11|<-10dB, with wide 3dB beamwidth of E-plane about 1200, respectively.


Sign in / Sign up

Export Citation Format

Share Document