Compact stack EBG structure for enhanced isolation between stack patch antenna array elements for MIMO application

Author(s):  
Mahesh B. Kadu ◽  
Neela Rayavarapu

Abstract In this research article, a compact wideband stack patch antenna array integrated with compact stack electromagnetic band gap (EBG) structure for multiple input multiple output (MIMO) application is proposed. The wide resonance bandwidth is achieved at 2.45 GHz band by stack arrangement of compact meander line slot driven and parasitic patch elements. The isolation bandwidth is matched with resonance bandwidth with the design of a compact stack L slot EBG structure. The polarization diversity and three-layer EBG structure ensure an enhancement in isolation level. To validate the performance of the proposed stack antenna array, a prototype was fabricated and tested for different MIMO parameters. The measured result confirms the effectiveness of the proposed antenna array in a diverse MIMO environment.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Enze Zhang ◽  
Andrea Michel ◽  
Paolo Nepa ◽  
Jinghui Qiu

A compact, low-profile, two-port dual-band circularly polarized (CP) stacked patch antenna for radio-frequency identification (RFID) multiple-input-multiple-output (MIMO) readers is proposed, which employs the shared-aperture technique. The proposed antenna adopts a 1.524 mm thickness Rogers Ro4350b substrate with relative permittivity of 3.48. Two pairs of isolated ports are working at two microwave- (MW-) RFID bands (2.4–2.485 GHz and 5.725–5.875 GHz) with high port isolation of 25 dB and 30 dB, respectively. A shared metal slot layer is designed to separate two feeding structures of the lower band and upper band for port isolation enhancement as well as saving space. Corner-truncated square slot and patch configurations have been designed to obtain CP modes. In the lower and upper MW-RFID bands, the relative impedance bandwidths are 12.2% and 5.7%, and the maximum realized gains are higher than 7.3 dBic. Moreover, two-element configurations have been combined for an RFID MIMO system that occupies a dimension of 119 mm × 119 mm × 12.9 mm. The MIMO antenna performance of envelope correlation coefficient (ECC) is lower than 0.03, and diversity gain is close to 10 dB.


2011 ◽  
Vol 20 (03) ◽  
pp. 515-529 ◽  
Author(s):  
CONSTANTINOS I. VOTIS ◽  
PANOS KOSTARAKIS ◽  
LEONIDAS P. IVRISSIMTZIS

The design of a multiple-output transmitter for digital beamforming (DBF), Multiple-Input Multiple-Output (MIMO) and channel sounder applications, based on Direct Digital Synthesis (DDS) system is presented and investigated in terms of antenna array performance. DDS generates independently modulated signals on specific carrier frequencies and is employed as the first stage in the proposed implementation, furnishing output signal of configurable amplitude, phase and frequency. The resulting phase progression, amplitude and beamforming accuracy of a beam steering array are further investigated, showing that the proposed architecture can provide a steering beam with high accuracy. Experimental results of system performance indicate that this architecture can drive efficiently and accurately an antenna array with independent modulated RF signals, with programmable frequency, initial phase, and magnitude.


Sign in / Sign up

Export Citation Format

Share Document