Orthogonally polarized meandered fed multiple input multiple output antenna array for C‐band sub‐6GHz 5G and unlicensed Wi‐Fi smart‐phone applications

Author(s):  
Insha Ishteyaq ◽  
Issmat Shah Masoodi ◽  
Khalid Muzaffar
2011 ◽  
Vol 20 (03) ◽  
pp. 515-529 ◽  
Author(s):  
CONSTANTINOS I. VOTIS ◽  
PANOS KOSTARAKIS ◽  
LEONIDAS P. IVRISSIMTZIS

The design of a multiple-output transmitter for digital beamforming (DBF), Multiple-Input Multiple-Output (MIMO) and channel sounder applications, based on Direct Digital Synthesis (DDS) system is presented and investigated in terms of antenna array performance. DDS generates independently modulated signals on specific carrier frequencies and is employed as the first stage in the proposed implementation, furnishing output signal of configurable amplitude, phase and frequency. The resulting phase progression, amplitude and beamforming accuracy of a beam steering array are further investigated, showing that the proposed architecture can provide a steering beam with high accuracy. Experimental results of system performance indicate that this architecture can drive efficiently and accurately an antenna array with independent modulated RF signals, with programmable frequency, initial phase, and magnitude.


Circuit World ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Premalatha J. ◽  
Sheela D.

Purpose This paper aims to present the design of a compact vertically polarized four-element UWB antenna suitable for MIMO communications. Design/methodology/approach The unit cell antenna is constructed using a square ring radiator excited through a stepped impedance feed. The proposed antenna covers the Ultra-wideband (UWB) spectrum ranging from 2.2 to 12.3 GHz. The isolation between the unit cell antennas in the array is enhanced using a simple microstrip line resonator. The decoupling element is connected to the ground through a via. Findings The proposed scheme offers at least 16 dB improvement in the port-to-port coupling. Furthermore, the four-element antenna array is constructed using a specific interlocking scheme. The proposed antenna array’s Multiple Input Multiple Output (MIMO) performance metrics are analyzed. Originality/value By suitably selecting the excitation port, directional radiation patterns can be realized. The combined radiation pattern covers 360 degrees. A prototype antenna array is fabricated, and the simulation results are verified using real-time experiments. The proposed antenna is a suitable candidate for shark fin housing in automotive communications.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-Qin Wang ◽  
Huaizong Shao ◽  
Jingye Cai

One of the main advantages of multiple-input multiple-output (MIMO) antenna is that the degrees-of-freedom can be significantly increased by the concept of virtual antenna array, and thus the MIMO antenna array should be carefully designed to fully utilize the virtual antenna array. In this paper, we design the MIMO antenna array with the polynomial factorization method. For a desired virtual antenna array, the polynomial factorization method can optimally design the specified MIMO transmitter and receiver. The array performance is examined by analyzing the degrees-of-freedom and statistical output signal-to-interference-plus-noise ratio (SINR) performance. Design examples and simulation results are provided.


Frequenz ◽  
2017 ◽  
Vol 71 (5-6) ◽  
Author(s):  
Lingsheng Yang ◽  
Ming Ji ◽  
Biyu Cheng ◽  
Bo Ni

AbstractIn this letter, an eight-element Multiple-input multiple-output (MIMO) antenna system for LTE mobile handset applications is proposed. The antenna array consists of eight 3D inverted F-shaped antennas (3D-IFA), and the measured –10 dB impedance bandwidth is 3.2–3.9 GHz which can cover the LTE bands 42 and 43 (3.4–3.8 GHz). By controlling the rotation of the antenna elements, no less than 10 dB isolation between antenna elements can be obtained. After using the specially designed meandered slots on the ground as decoupling structures, the measured isolation can be further improved to higher than 13 dB between the antenna elements at the whole operating band.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 994 ◽  
Author(s):  
Li ◽  
Wei ◽  
Tan ◽  
Lei ◽  
Wu ◽  
...  

A planar flexibly extensible multiple-input–multiple-output (MIMO) antenna array with a self-isolation property is proposed. The main characteristics of the proposed array are: (i) no extra isolation structure is required to improve isolation between elements; (ii) elements are arranged with each other with a spacing of 0 mm, (iii) the configuration can be flexibly extended to a large antenna array according to actual requirements. For a test example, the practical processing and testing of an eight-element array is conducted. The tested results demonstrate that the proposed design possesses wide impedance bandwidth (IBW) of 65% and very good isolation (>18 dB) across the operating bandwidth, which match well with the simulated ones. Moreover, envelope correlation coefficient (ECC) is calculated to valuate MIMO performance; an acceptable ECC (lower than 0.05) suggests that the proposed configuration has good diversity performance and can be a potential candidate for MIMO communications.


Sign in / Sign up

Export Citation Format

Share Document