Suppression of Annual Ryegrass in Corn with Nicosulfuron

2019 ◽  
Vol 33 (1) ◽  
pp. 173-177 ◽  
Author(s):  
Taïga B. Cholette ◽  
Nader Soltani ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
Peter H. Sikkema

AbstractField studies were conducted to determine the possible rate and timing of nicosulfuron to suppress annual ryegrass (ARG) seeded as a cover crop at the time of corn planting without affecting corn performance near Ridgetown, ON, Canada, in 2016 and 2017. Nicosulfuron was applied at rates from 0.8 to 50 g ai ha–1when the ARG was at the two- to three- or four- to five-leaf stages, or approximately 3 or 4 wk after emergence of both corn and ARG. There were no differences between the two application timings in grain yield responses or ARG suppression. As the rate of nicosulfuron increased from 0.8 to 50 g ai ha–1, ARG was suppressed 6% to 76% and 5% to 96%, at 1 and 4 wk after application (WAA), respectively. At 4 WAA, ARG biomass decreased from 29 to 1 g m–2as the rate of nicosulfuron increased from 0.8 to 50 g ai ha–1, compared to 36 g m–2in the untreated control. Where nicosulfuron was not applied to ARG, grain corn yield was reduced by 6% compared to the ARG-free control; similar effects on corn yield were observed with nicosulfuron at the lowest rate applied at 0.8 g ai ha–1. Grain corn yield was reduced by 2.5% with the application of nicosulfuron at 25 g ai ha–1(label rate for corn) compared to no ARG control, but this was not statistically significant. This study identified rates of nicosulfuron that suppressed ARG when emerged approximately the same day as corn, but there was evidence that grain corn yields were lowered because of interference, possibly during the critical weed control period. Based on this study, an ARG cover crop should not be seeded at the same time as corn unless one is willing to accept a risk for corn grain yield losses for the sake of the cover crop.

1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.


2006 ◽  
Vol 20 (3) ◽  
pp. 640-645 ◽  
Author(s):  
Ehsan Bijanzadeh ◽  
Hossein Ghadiri

Field studies were conducted at Shiraz, Iran, during 2000 and 2001 to investigate the effect of separate and combined herbicide treatments on weed control and corn yield. Separate and combined herbicide treatments included 14 combinations applied at two rates. Herbicides reduced weed biomass compared with the weedy check. In both years, maximum reduction in weed biomass was observed with atrazine plus alachlor at 1 + 2.44 and 1.5 + 1.92 kg ai/ha and minimum reduction in weed biomass was observed with rimsulfuron at 0.02 and 0.04 kg/ha. In 2000 and 2001, 2,4-D plus MCPA at 0.36 + 0.31 and 0.54 + 0.46 kg/ha, and alachlor plus 2,4-D plus MCPA at 1.92 + 0.54 + 0.46 kg/ha, and 2.44 + 0.36 + 0.31 kg/ha, controlled 80 to 100% of field bindweed and rimsulfuron at 0.02 and 0.04 kg/ha controlled 17 to 70% of field bindweed. All herbicide treatments controlled redroot pigweed 60 to 100%. In 2000, at 6 and 17 WAP, minimum biomass reduction of Chinese-lantern-plant was observed with 2,4-D plus MCPA at 0.36 + 0.31 and 0.54 + 0.46 kg/ha, and primisulfuron plus prosulfuron at 0.02 + 0.02 and 0.03 + 0.03 kg/ha. Rimsulfuron plus primisulfuron plus prosulfuron at 0.02 + 0.03 + 0.03 and 0.04 + 0.02 + 0.02 kg/ha reduced johnsongrass biomass 96 to 100% and the efficacy of rimsulfuron increased when tank mixed with primisulfuron plus prosulfuron. Results of both years showed that all herbicide treatments increased corn grain yield as compared with the weedy check. Maximum corn grain yield was obtained with combinations of atrazine plus alachlor at 1 + 2.44 and 1.5 + 1.92 kg/ha.


2009 ◽  
Vol 23 (3) ◽  
pp. 331-334 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Saflufenacil (BAS 800H) is a new herbicide being developed by BASF for PRE broadleaf weed control in corn. Field studies were conducted at two Ontario locations in 2006 and 2007 to evaluate the tolerance of field corn to PRE and POST (spike and two- to three-leaf corn) applications of saflufenacil at 50, 100, and 200 g ai/ha with and without an adjuvant (surfactant blend + solvent [petroleum hydrocarbons]; 1% v/v). Saflufenacil applied PRE reduced corn height by as much as 12% with the highest rate of 200 g/ha; however, corn yield was not affected. When saflufenacil was applied without an adjuvant to corn at the spike stage, injury was as much as 12%, 7 d after treatment (DAT). However, corn height and yield were not affected. Saflufenacil applied POST to two- to three-leaf corn at 50 to 200 g/ha without an adjuvant resulted in as much as 25% injury and reduced corn height 31% but did not affect yield. Adding an adjuvant to POST applications of saflufenacil caused as much as 4 and 99% injury, reduced corn height 13 and 77%, and reduced corn yield 0 and 59% when applied to corn at the spike and at the two- to three-leaf stages, respectively. Based on these results, saflufenacil applied PRE can be safely used in corn at rates up to 200 g/ha. Saflufenacil applied to corn at the spike and two- to three-leaf stage at 50 or 100 g/ha without an adjuvant demonstrated acceptable corn tolerance and may allow for the use of saflufenacil beyond the proposed PRE use pattern. In contrast, applying saflufenacil POST with an adjuvant to spike and two- to three-leaf stage corn resulted in unacceptable injury and yield losses in field corn.


2010 ◽  
Vol 28 (1) ◽  
pp. 103-111 ◽  
Author(s):  
M.S. Lima ◽  
P.S.L. Silva ◽  
O.F. Oliveira ◽  
K.M.B. Silva ◽  
F.C.L. Freitas

The interference imposed the by weeds on corn decreases practically all vegetative characteristics. As consequence, the green ear and grain yield are also reduced. Losses due to the fall armyworm (Spodoptera frugiperda) attack can reduce corn grain yield up to 34%. In general, weed and insect control issues are addressed separately in research papers. Nevertheless, interaction between weeds and insects may exist. This study aimed to evaluate green ear and corn grain yield response to weed and fall armyworm control. A completely randomized block design with split-plots and five replicates was adopted. Corn cultivar AG 1051 was grown under weedy conditions or with control by hand hoeings performed at 20 and 40 days after planting. Fall armyworm control (applied to subplots) was performed with sprays of water (control), deltamethrin (5g active ingredient ha-1); neem oil, at 0.5% (diluted in water), and neem leaf extract at 5%. Each product was sprayed three times, at seven-day intervals, starting at the 7th day after planting, using 150 L ha-1 of the tank solution. Dry mass of the above-ground part, internode diameter, leaf length, leaf width, leaf area, green ear yield and grain yield of corn were reduced due to the lack of weed control. Fall armyworm control in the weeded plots did not influence green ear yield and grain yield, except green mass of marketable, husked ears, which was reduced when the caterpillar was not controlled. Without weed control, neem extracts and deltamethrin sprays provided highest yields of number and total weight of green ears with husks, number and weight of marketable ears with husks and number of marketable ears without husks. The best results for husked ear mass and for grain yield were obtained with neem extract and deltamethrin, respectively.


Weed Science ◽  
1994 ◽  
Vol 42 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Robert L. De Haan ◽  
Donald L. Wyse ◽  
Nancy J. Ehlke ◽  
Bruce D. Maxwell ◽  
Daniel H. Putnam

Field experiments were conducted to determine the effect of a short-term spring-seeded smother plant on corn development and weed control. Yellow mustard was managed to provide interference durations of 2,4,6, or 8 wk, and maximum height of 10 or 20 cm. Three yellow mustard planting patterns and eight seeding rates were evaluated during 1989 and 1990 at St. Paul and Rosemount, MN. Yellow mustard seeded at 2120 seeds m−2with an interference duration of 4 wk and a maximum height of 10 cm decreased corn yield 17% and reduced weed dry weight 4 wk after yellow mustard emergence an average of 66%. Yellow mustard with a 2-wk interference duration did not reduce weed dry weight. Yellow mustard seeded at 2120 seeds m−2with a 6- or 8-wk life cycle and 10-cm height reduced weed dry weight at the end of the interference period an average of 82% but delayed corn silk emergence an average of 5.3 d and reduced average grain yield 19%. Increasing yellow mustard height from 10 to 20 cm delayed corn silk emergence and reduced grain yield but did not decrease weed dry weight. Yellow mustard with an interference duration of 4 wk and a maximum height of 10 cm, seeded over the corn row at 530 seeds m−2, reduced weed dry weight 4 wk after mustard emergence an average of 51%, and resulted in an average corn grain yield reduction of 4%, compared with corn grown in monoculture averaged over weedy and weed-free treatments. These results suggest that it may be possible to develop spring-seeded smother plants that reduce weed biomass up to 80% but have only a small impact on corn yield.


1993 ◽  
Vol 7 (2) ◽  
pp. 425-430 ◽  
Author(s):  
Gregg A. Johnson ◽  
Michael S. Defelice ◽  
Zane R. Helsel

Field experiments were conducted in central Missouri in 1989 and 1990 to evaluate weed control practices in conjunction with cover crops and cover management systems in reduced tillage corn. There was no difference in weed control among soybean stubble, hairy vetch, and rye soil cover when averaged over cover management systems and herbicide treatments. However, mowed hairy vetch and rye covers provided greater weed control in the no-till plots than soybean stubble when no herbicide was used. Differences in weed control among cover management systems were reduced or eliminated when a PRE herbicide was applied. corn population and height were reduced by hairy vetch and rye soil cover. Corn grain yield was reduced in rye plots both years. There was no difference in grain yield between tilled and no-till plots.


2020 ◽  
Vol 34 (6) ◽  
pp. 787-793
Author(s):  
Stephanie A. DeSimini ◽  
Kevin D. Gibson ◽  
Shalamar D. Armstrong ◽  
Marcelo Zimmer ◽  
Lucas O.R. Maia ◽  
...  

AbstractField experiments were conducted in 2017 and 2018 at two locations in Indiana to evaluate the influence of cover crop species, termination timing, and herbicide treatment on winter and summer annual weed suppression and corn yield. Cereal rye and canola cover crops were terminated early or late (2 wk before or after corn planting) with a glyphosate- or glufosinate-based herbicide program. Canola and cereal rye reduced total weed biomass collected at termination by up to 74% and 91%, in comparison to fallow, respectively. Canola reduced horseweed density by up to 56% at termination and 57% at POST application compared to fallow. Cereal rye reduced horseweed density by up to 59% at termination and 87% at POST application compared to fallow. Canola did not reduce giant ragweed density at termination in comparison to fallow. Cereal rye reduced giant ragweed density by up to 66% at termination and 62% at POST application. Termination timing had little to no effect on weed biomass and density reduction in comparison to the effect of cover crop species. Cereal rye reduced corn grain yield at both locations in comparison to fallow, especially for the late-termination timing. Corn grain yield reduction up to 49% (4,770 kg ha–1) was recorded for cereal rye terminated late in comparison to fallow terminated late. Canola did not reduce corn grain yield in comparison to fallow within termination timing; however, late-terminated canola reduced corn grain yield by up to 21% (2,980 kg ha–1) in comparison to early-terminated fallow. Cereal rye can suppress giant ragweed emergence, whereas canola is not as effective at suppressing large-seeded broadleaves such as giant ragweed. These results also indicate that early-terminated cover crops can often result in higher corn grain yields than late-terminated cover crops in an integrated weed management program.


Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 903-910
Author(s):  
Gail A. Wicks ◽  
Robert G. Wilson ◽  
Garold W. Mahnken ◽  
Gordon E. Hanson

Field studies were conducted to determine the influence of annual herbicide treatments plus cultivation on weed populations and corn yields in ridge-till corn during a 3-yr period at Mitchell, NE, and a 7-yr period at North Platte, NE. When the experiment was initiated at North Platte, no weeds were present before corn planting. It took 4 yr before triazine-resistant kochia became a problem before corn planting in plots treated with atrazine, but these were controlled by other operations prior to corn harvest. In the cultivated check, green foxtail densities before harvest increased from 0 in 1985 to 32 plants 100 m−2in 1991. Annual applications of dicamba plus 2,4-D 10 d early preplant followed by cultivation controlled triazine-resistant kochia and velvetleaf, but common lambsquarters, nightshade species, and green foxtail increased. Volunteer corn was controlled with cultivation. After 3 yr at Mitchell, the annual weed population increased 10-fold in the cultivated check. Thus, corn yields were reduced 64% with two cultivations compared with an annual early preplant application of dicamba plus 2,4-D followed by alachlor plus cyanazine PRE and two cultivations. With two cultivations under low annual weed populations at North Platte, grain yield from the cultivated check treatment was not different from annual treatments of herbicides after 7 yr. Metolachlor plus atrazine occasionally caused a reduction in corn grain yields.


Weed Science ◽  
1968 ◽  
Vol 16 (2) ◽  
pp. 232-234 ◽  
Author(s):  
K. P. Buchholtz ◽  
R. E. Doersch

Corn (Zea mays L.) plots receiving broadcast spray applications of triazine herbicides without cultivation yielded as much as plots receiving the standard two cultivations for weed control. One cultivation resulted in an average 6% increase in corn grain yield on herbicide treated plots. This yield increase probably was due to improved weed control. Weed growth reduced grain yields an average of 1.23 bu/A for each 100 lb/A of dry weeds. In some experiments, increases in corn yield due to improved weed control by cultivation on plots treated with herbicides were less than increases expected based on weed growth reductions. This disparity may have been due to injury to the corn by cultivation.


2007 ◽  
Vol 21 (4) ◽  
pp. 977-981 ◽  
Author(s):  
David Chikoye ◽  
Udensi E. Udensi ◽  
A. Fontem Lum ◽  
Friday Ekeleme

Cogongrass and guineagrass are serious perennial weeds in small-scale farms in lowland subhumid zones of West Africa. Field studies were conducted in 2002 and 2003 at two sites in Ibadan, Nigeria [Ijaye and the International Institute of Tropical Agriculture (IITA)], to evaluate the effect of rimsulfuron on weed communities dominated by cogongrass and guineagrass in corn. At both sites, treatments were rimsulfuron dosages of 0 (nontreated control), 10, 20, 30, 40, 50, 60, 70, and 80 g ai/ha. Rimsulfuron did not cause any visible phytotoxicity on the corn at any dosage at either site. There was a rapid increase in weed control as the dosage of rimsulfuron increased from 0 to 20 g/ha. Weed control was not improved at rates higher than 20 g/ha. Rimsulfuron was very effective against sedges,Ipomoea involucrata, Bengal dayflower, gulf leafflower, old-world diamond-flower, and wild jute providing more than 80% control at dosages between 10 and 20 g/ha at Ijaye. Rimsulfuron was less effective for cogongrass, with a maximum of only 38% control observed. At IITA, the herbicide was very effective against guineagrass, Bengal dayflower, nodeweed, coat buttons, redfruit passionflower, and waterleaf; all of which were controlled more than 70% with any rate of rimsulfuron. Regression analysis showed that the dosage of rimsulfuron required to reduce shoot dry biomass by 70% was 5 g/ha for guineagrass and 35 g/ha for cogongrass at 3 wk after treatment (WAT). At crop maturity, the dosage of rimsulfuron required to reduce shoot dry biomass by 70% was 43 g/ha for guineagrass and 200 g/ha for cogongrass. The dry biomass of cogongrass and guineagrass was higher at crop harvest than at 2 WAT regardless of herbicide dosage. Corn grain yield was 1.8 times higher at IITA than at Ijaye. At both sites, corn grain yield increased with increased herbicide dosage. Maximum corn grain yields were obtained at a rimsulfuron dosage of 20 g/ha.


Sign in / Sign up

Export Citation Format

Share Document