Extending the critical period for weed control model to better include weed succession using common sunflower as a mimic weed in high-yielding cotton

2021 ◽  
pp. 1-27
Author(s):  
Graham W. Charles ◽  
Ian N. Taylor

Abstract The critical period for weed control (CPWC) adds value to integrated weed management by identifying the period during which weeds need to be controlled to avoid yield losses exceeding a defined threshold. However, the traditional application of the CPWC does not identify the timing of control needed for weeds that emerge late in the critical period. In this study, CPWC models were developed from field data in high yielding cotton crops during three summer seasons from 2005 to 2008, using the mimic weed; common sunflower, at densities of 2 to 20 plants m−2. Common sunflower plants were introduced at up to 450 growing degree days (GDD) after crop planting and removed at successive 200 GDD intervals after introduction. The CPWC models were described using extended Gompertz and logistic functions that included weed density, time of weed introduction and time of weed removal (logistic function only) in the relationships. The resulting models defined the CPWC for late emerging weeds, identifying a period after weed emergence before weed control was required to prevent yield loss exceeding the yield-loss threshold. Where weeds emerged in sufficient numbers toward the end of the critical period, the model predicted that crop yield loss resulting from competition by these weeds would not exceed the yield-loss threshold until well after the end of the CPWC. These findings support the traditional practice of ensuring weeds are controlled before crop canopy closure, with later weed control inputs used as required.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
M. P. Anwar ◽  
A. S. Juraimi ◽  
B. Samedani ◽  
A. Puteh ◽  
A. Man

Critical period of weed control is the foundation of integrated weed management and, hence, can be considered the first step to design weed control strategy. To determine critical period of weed control of aerobic rice, field trials were conducted during 2010/2011 at Universiti Putra Malaysia. A quantitative series of treatments comprising two components, (a) increasing duration of weed interference and (b) increasing length of weed-free period, were imposed. Critical period was determined through Logistic and Gompertz equations. Critical period varied between seasons; in main season, it started earlier and lasted longer, as compared to off-season. The onset of the critical period was found relatively stable between seasons, while the end was more variable. Critical period was determined as 7–49 days after seeding in off-season and 7–53 days in main season to achieve 95% of weed-free yield, and 23–40 days in off-season and 21–43 days in main season to achieve 90% of weed-free yield. Since 5% yield loss level is not practical from economic view point, a 10% yield loss may be considered excellent from economic view point. Therefore, aerobic rice should be kept weed-free during 21–43 days for better yield and higher economic return.


2015 ◽  
Vol 43 (2) ◽  
pp. 355-360 ◽  
Author(s):  
Dogan ISIK ◽  
Adem AKCA ◽  
Emine KAYA ALTOP ◽  
Nihat TURSUN ◽  
Husrev MENNAN

Accurate assessment of crop-weed control period is an essential part for planning an effective weed management for cropping systems. Field experiments were conducted during the seasonal growing periods of potato in 2012 and 2013 in Kayseri, Turkey to assess critical period for weed control (CPWC) in potato. A four parameter log-logistic model was used to assist in monitoring and analysing two sets of related, relative crop yield. Data was obtained during the periods of increased weed interference and as a comparison, during weed-free periods. In both years, the relative yield of potato decreased with a longer period of weed-interference whereas increased with increasing length of weed free period. In 2012, the CPWC ranged from 112 to 1014 GDD (Growing Degree Days) which corresponded to 8 to 66 days after crop emergence (DAE) and between 135-958 GDD (10 to 63 DAE) in the following year based on a 5% acceptable yield loss. Weed-free conditions needed to be established as early as the first week after crop emergence and maintained as late as ten weeks after crop emergence to avoid more than 5% yield loss in the potato. The results suggest that CPWC could well assist potato producers to significantly reduce the expense of their weed management programs as well as improving its efficacy.


Weed Science ◽  
2012 ◽  
Vol 60 (1) ◽  
pp. 86-91 ◽  
Author(s):  
Emily Green-Tracewicz ◽  
Eric R. Page ◽  
Clarence J. Swanton

The critical period for weed control (CPWC) is an integral component of integrated weed management strategies. Several studies have defined the CPWC in soybean under varying agronomic conditions, yet none have described the mechanisms involved in crop yield losses caused by weed competition. We hypothesized that under nonresource-limiting conditions, morphological changes resulting from the expression of shade avoidance could be used to define a period of developmental sensitivity to low red-to-far-red ratio (R : FR) that would overlap with the defined CPWC in soybean. Two experiments (a sequential harvest and a weed addition/removal series) were conducted in 2008 and 2009 under controlled environmental conditions to address this hypothesis. Two light-quality treatments were used: (1) high R : FR ratio (i.e., weed-free), and (2) low R : FR ratio (i.e., weedy). The low R : FR ratio treatment induced shade avoidance responses in soybean, which included increases in height, internode length, and the shoot : root ratio, as well as a reduction in biomass accumulation and leaf number. Using the morphological changes in biomass and leaf number observed in the weed addition/removal series, a period of developmental sensitivity to low R : FR was defined between the first trifoliate (V1) and third trifoliate (V3) stages of soybean development. This period was found to be very similar to the CPWC previously defined by field studies of soybean–weed competition.


Weed Science ◽  
2006 ◽  
Vol 54 (5) ◽  
pp. 928-933 ◽  
Author(s):  
Martin M. Williams

The critical period for weed control (CPWC) identifies the phase of the crop growth cycle when weed interference results in unacceptable yield losses; however, the effect of planting date on CPWC is not well understood. Field studies were conducted in 2004 and 2005 at Urbana, IL, to determine CPWC in sweet corn for early May (EARLY) and late-June (LATE) planting dates. A quantitative series of treatments of both increasing duration of interference and length of weed-free period were imposed within each planting-date main plot. The beginning and end of the CPWC, based on 5% loss of marketable ear mass, was determined by fitting logistic and Gompertz equations to the relative yield data representing increasing duration of weed interference and weed-free periods, respectively. Weed interference stressed the crop more quickly and to a greater extent in EARLY, relative to LATE. At a 5% yield-loss level, duration of weed interference for 160 and 662 growing-degree days (GDD) from crop emergence marked the beginning of the CPWC for EARLY and LATE, respectively. When maintained weed-free for 320 and 134 GDD, weeds emerging later caused yield losses of less than 5% for EARLY and LATE, respectively. Weed densities exceeded 85 plants m−2for the duration of the experiments and predominant species included barnyardgrass, common lambsquarters, common purslane, redroot pigweed, and velvetleaf. Weed canopy height and total aboveground weed biomass were 300% and 500% higher, respectively, for EARLY compared with LATE. Interactions between planting date and CPWC indicate the need to consider planting date in the optimization of integrated weed management systems for sweet corn. In this study, weed management in mid-June–planted sweet corn could have been less intensive than early May–planted corn, reducing herbicide use and risk of herbicide carryover to sensitive rotation crops.


Author(s):  
Sheeja K Raj ◽  
Elizabeth K Syriac

Weeds are the major biological constraint in direct seeded rice (DSR) due to the concurrent emergence of competitive weeds, absence of water to suppress weeds at the time of seedling emergence and emergence of difficult to control weeds. Strategies on weed management in direct seeded rice depend on critical period of weed control, weed flora and method to be adopted. In order to achieve the long term and sustainable management of weeds in DSR an integration of different weed management strategies like integrated weed management (IWM) are essential. The literature regarding the critical period of weed control, weed flora and different methods for the sustainable management of weeds in direct seeded rice are reviewed in this paper.


Weed Science ◽  
2015 ◽  
Vol 63 (SP1) ◽  
pp. 188-202 ◽  
Author(s):  
Stevan Z. Knezevic ◽  
Avishek Datta

There is an ever-larger need for designing an integrated weed management (IWM) program largely because of the increase in glyphosate-resistant weeds, not only in the United States but also worldwide. An IWM program involves a combination of various methods (cultural, mechanical, biological, genetic, and chemical) for effective and economical weed control (Swanton and Weise 1991). One of the first steps in designing an IWM program is to identify thecritical period for weed control(CPWC), defined as a period in the crop growth cycle during which weeds must be controlled to prevent crop yield losses (Zimdahl 1988).


Author(s):  
Sheeja K. Raj ◽  
J. K. Sinchana

Pulses are the important crop after cereals and is the cheapest source of dietary protein. After the Green revolution, the production of pulses in India remain stagnant over the years due to various biotic and abiotic stresses. Among the various biotic stresses, weeds are the major one which causes severe yield loss in pulses. Due to initial slow growth of pulses, weeds emerge first and gain competitive advantage over the crop and exhibit smothering effect on crop. Moreover, major area of pulses (84 per cent) are under rainfed condition and grown in combination with non-legume crop. As a result, pulses are subjected to various types of biotic and abiotic stresses. Weeds besides causing direct loss in yield also hinder farm activities and serve as alternate host to many pests. Weed management in pulses is essential to bring the weeds below the threshold level to maximize the seed yield and quality. The literature regarding the importance of weed management in pulses, weed flora, critical period of crop weed competition and different weed management methods of weed control are collected and presented in this paper.Weeds are the predominant biological constraint in pulse production due to the slow initial growth of the crop. Strategies’ of weed management depends on the weed competition, types of weeds present and weed control method adopted. In general, critical period of weed competition for short duration pulses is up to 30 days and for long duration pulse crops it is up to 60 days. The major three types of weeds viz., grasses, broad leaved weeds and sedges were found in association with pulses. Intensity of weed infestation varies with agroecological conditions and crop management practices followed. A system approach is necessary to maintain the weed population below the economic threshold level thereby reducing the yield loss. Integrated weed management (IWM) which has been proved to be more effective than any single method in alleviating the buildup of weeds in pulse crop.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


2005 ◽  
Vol 75 (4) ◽  
pp. 79-84 ◽  
Author(s):  
D. Shaner

Some of the first products of biotechnology to reach the marketplace have been herbicide-resistant crops. Industry sees the development of herbicide-resistant varieties as a way to increase the availability of proven herbicides for a broader range of crops. However, the development of herbicide- resistant crops requires special attention to potential environmental questions such as herbicide usage, selection of resistant weed biotypes and spread of resistance from the resistant crop to wild species. Industry is actively addressing these concerns during the process of development. Proper development and use of herbicide-resistant crops in integrated weed management programs will provide farmers with increased flexibility, efficiency, and decreased cost in their weed control practices without increasing the risk of herbicide-resistant weeds. Furthermore, herbicide-resistant crops should prove to be valuable tools in managing herbicide- resistant weeds.


Sign in / Sign up

Export Citation Format

Share Document