Strip Intercropping of Rye–Vetch Mixtures: Effects on Weed Growth and Competition in Strip-tilled Sweet Corn

Weed Science ◽  
2019 ◽  
Vol 67 (1) ◽  
pp. 114-125 ◽  
Author(s):  
Carolyn J. Lowry ◽  
Daniel C. Brainard

AbstractStrip-intercropping of functionally diverse cover crop mixtures including cereal rye (Secale cerealeL.) and hairy vetch (Vicia villosaRoth) is one mechanism by which nitrogen (N) banding can be applied to an organic, strip-tilled system to increase crop competitiveness over weeds. We hypothesized that by targeting hairy vetch, a low C:N legume, to the tilled strip directly in row with future crop establishment, and cereal rye, a high C:N grass, to the untilled strip directly between future crop rows, that N would be preferentially available to the crop. We conducted a field study between 2011 to 2013 in southwest Michigan to examine the effects of rye–vetch mixture spatial arrangement (strip intercropping vs. full-width mixture) on (1) soil inorganic N; (2) weed biomass; and (3) sweet corn (Zea maysL.) biomass, yield, and competitiveness against weeds. We found that as the proportion of vetch biomass in the crop row (in-row, IR) increased, we also saw increasing levels of IR soil inorganic N and greater early sweet corn N uptake and growth relative to weeds. However, sweet corn yield and final biomass were more responsive to vetch biomass across the whole plot (WP) and did not respond to rye and vetch segregation into strips. Increasing vetch WP biomass increased sweet corn final biomass across both years, but only increased corn competitiveness against weeds in 1 out of 2 years and decreased sweet corn competitiveness in the other year. Strip-intercropping of cereal rye and hairy vetch has potential to increase soil N availability to the crop, thereby increasing early crop competitiveness, which may lower weed management costs.

HortScience ◽  
2000 ◽  
Vol 35 (7) ◽  
pp. 1258-1262 ◽  
Author(s):  
Sidat Yaffa ◽  
Bharat P. Singh ◽  
Upendra M. Sainju ◽  
K.C. Reddy

Sustainable practices are needed in vegetable production to maintain yield and to reduce the potential for soil erosion and N leaching. We examined the effects of tillage [no-till (NT), chisel plowing (CP), and moldboard plowing (MP)], cover cropping [hairy vetch (Vicia villosa Roth) vs. winter weeds], N fertilization (0, 90, and 180 kg·ha-1 N), and date of sampling on tomato (Lycopersicon esculentum Mill.) yield, N uptake, and soil inorganic N in a Norfolk sandy loam in Fort Valley, Ga. for 2 years. Yield was greater with CP and MP than with NT in 1996 and was greater with 90 and 180 than with 0 kg·ha-1 N in 1996 and 1997. Similarly, aboveground tomato biomass (dry weight of stems + leaves + fruits) and N uptake were greater with CP and MP than with NT from 40 to 118 days after transplanting (DAT) in 1996; greater with hairy vetch than with winter weeds at 82 DAT in 1997; and greater with 90 or 180 than with 0 kg·ha-1 N at 97 DAT in 1996 and at 82 DAT in 1997. Soil inorganic N was greater with NT or CP than with MP at 0- to 10-cm depth at 0 and 30 DAT in 1996; greater with hairy vetch than with winter weeds at 0- to 10-cm and at 10- to 30-cm at 0 DAT in 1996 and 1997, respectively; and greater with 90 or 180 than with 0 kg·ha-1 N from 30 to 116 DAT in 1996 and 1997. Levels of soil inorganic N and tomato N uptake indicated that N release from cover crop residues was synchronized with N need by tomato, and that N fertilization should be done within 8 weeks of transplanting. Similar tomato yield, biomass, and N uptake with CP vs. MP and with 90 vs. 180 kg·ha-1 N suggests that minimum tillage, such as CP, and 90 kg·ha-1 N can better sustain tomato yield and reduce potentials for soil erosion and N leaching than can conventional tillage, such as MP, and 180 kg·ha-1 N, respectively. Because of increased vegetative cover in the winter, followed by increased mulch and soil N in the summer, hairy vetch can reduce the potential for soil erosion and the amount of N fertilization required for tomato better than can winter weeds.


2004 ◽  
Vol 84 (4) ◽  
pp. 421-430 ◽  
Author(s):  
Y. K. Soon ◽  
M. A. Arshad

A field study was conducted to determine the effects and interactions of crop sequence, tillage and residue management on labile N pools and their availability because such information is sparse. Experimental treatments were no-till (NT) vs. conventional tillage (CT), and removal vs. retention of straw, imposed on a barley (Hordeum vulgare L.)-canola (Brassica rapa L.)-field pea (Pisum sativum L.) rotation. 15N-labelling was used to quantify N uptake from straw, below-ground N (BGN), and fertilizer N. Straw retention increased soil microbial biomass N (MBN) in 2 of 3 yr at the four-leaf growth stage of barley, consistent with observed decreases in extractable soil inorganic N at seeding. However, crop yield and N uptake at maturity were not different between straw treatments. No tillage increased soil MBN, crop yield and N uptake compared to CT, but had no effect on extractable soil inorganic N. The greater availability of N under NT was probably related to soil moisture conservation. Tillage effects on soil and plant N were mostly independent of straw treatment. Straw and tillage treatments did not influence the uptake of N from its various sources. However, barley following pea (legume/non-legume sequence) derived a greater proportion of its N from BGN (13 to 23% or 9 to 23 kg N ha-1) than canola following barley (nonlegumes) (6 to 16% or 3 to 9 kg N ha-1). Fertilizer N constituted 8 to 11% of barley N uptake and 23 to 32% of canola N uptake. Straw N contributed only 1 to 3% of plant N uptake. This study showed the dominant influence of tillage on N availability, and of the preceding crop or cropping sequence on N uptake partitioning among available N sources. Key words: Crop residue, crop sequence, labile nitrogen, nitrogen uptake, pea, tillage


2004 ◽  
Vol 40 (3) ◽  
pp. 341-352 ◽  
Author(s):  
R. CHINTU ◽  
P. L. MAFONGOYA ◽  
T. S. CHIRWA ◽  
E. KUNTASHULA ◽  
D. PHIRI ◽  
...  

Gliricidia sepium features prominently as a soil replenishment tree in planted coppicing fallows in eastern Zambia. Its usual method of propagation, through nurseryseedlings, is costly and may possibly hinder wider on-farm adoption. We compared fallows propagated by potted and bare root seedlings, direct seeding and stem cuttings, in terms of tree coppice biomass production, soil inorganic N availability and post-fallow maize yields under semi-arid conditions. We hypothesized that cutting fallows initially in May (off-season) would increase subsequent seasonal coppice biomass production as opposed to cutting them in November (at cropping). The tree survival and biomass order after two years was: potted = bare root > direct > cuttings. The post-fallow maize productivity sequence was: fertilized maize = potted = bare root > direct > cuttings = no-tree unfertilized controls, across seasons. However, farmers may prefer directly seeded fallows owing to their cost effectiveness. Soil inorganic N and maize yield were significantly higher in May-cut than in November-cut fallows. Preseason topsoil inorganic N and biomass N input correlated highly with maize yields. This implies that bothparameters may be used to predict post-fallow crop yields.


HortScience ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 1423-1433 ◽  
Author(s):  
Danielle D. Treadwell ◽  
Nancy G. Creamer ◽  
Greg D. Hoyt ◽  
Jonathan R. Schultheis

A 3-year field experiment was initiated in 2001 to evaluate different organic sweetpotato production systems that varied in cover crop management and tillage. Three organic systems: 1) compost and no cover crop with tillage (Org-NCC); 2) compost and a cover crop mixture of hairy vetch and rye incorporated before transplanting (Org-CCI); and 3) compost and the same cover crop mixture with reduced tillage (Org-RT) were compared with a conventionally managed system (Conv) with tillage and chemical controls. Yield of No. 1 sweetpotato roots and total yield were similar among management systems each year, except for a reduction in yield in Org-RT in 2002. The percentage of No. 1 grade roots was at least 17% and 23% higher in Org-CCI and Org-NCC than Org-RT in 2001 and 2002, respectively, and similar to Conv in 2001 and 2004. Organic and conventional N sources contributed to soil inorganic N reserves differently the 2 years this component was measured. In 2002, soil inorganic N reserves at 30 DAT were in the order: Org-CCI (90 kg·ha−1) > Org-NCC (67 kg·ha−1) > Org-RT (45 kg·ha−1), and Conv (55 kg·ha−1). No differences in soil inorganic N reserves were observed among systems in 2004. Sweetpotato N, P, and K tissue concentrations were different among systems only in 2004. That year, at 60 days after transplanting, tissue N, P, and K were greatest in Org-CCI. In 2001 and 2004, N (4.09% to 4.56%) and K (3.79% to 4.34%) were higher than sufficiency ranges for N (3.2% to 4.0%) and K (2.5% to 3.5%) defined by North Carolina Department of Agriculture and Consumer Services recommendations for all treatments. No tissue macronutrient or micronutrient concentrations were limiting during this experiment. Reduced rainfall during the 2002 sweetpotato growing season may have contributed to the low microbially mediated plant-available N from the organic fertilizer sources. Despite differences in the nutrient content of organic and conventional fertility amendments, organically managed systems receiving compost with or without incorporated hairy vetch and rye produced yields equal to the conventionally managed system.


2011 ◽  
Vol 8 (4) ◽  
pp. 8041-8065
Author(s):  
T. Dias ◽  
M. A. Martins-Loução ◽  
L. Sheppard ◽  
C. Cruz

Abstract. Nitrogen (N) is one of the nutrients most limiting to ecosystem productivity. However, N availability is increasing globally, which may affect ecosystem functions and stability. To understand the role of each ecosystem compartment in the cycling of increased N, we studied the initial response of a nutrient-poor ecosystem, a Mediterranean maquis, to increased N. N availability (dose and forms) was modified by three N additions along the year (spring, summer and middle autumn/winter). Soil inorganic N pools (nitrate in particular) strongly reflected the N additions in autumn, almost matching the total N added along the three additions. Cistus ladanifer, the dominant plant species, responded to the increased N (cover and N concentration in leaves and litter), and given that leaf shedding occurs in the summer, the importance of this N pool returning to the soil through litter decomposition on the total soil inorganic N in autumn was investigated. Data suggest that living plants and litter have a crucial role in preventing N losses from Mediterranean maquis. This is the first integrated field study on how European Mediterranean ecosystems retain increased N of different forms and doses, however longer-term studies are needed to explore the generality of this study's observations.


1997 ◽  
Vol 77 (1) ◽  
pp. 67-76 ◽  
Author(s):  
B. J. Zebarth ◽  
J. W. Paul

Spring soil nitrate and ammonium dynamics in south coastal British Columbia soils were examined with respect to the potential to develop a soil nitrate test for silage corn (Zea mays, L.). Soil nitrate and ammonium contents were measured to 90 cm depth in two soils from April to July of two growing seasons. Treatments included a control, spring application of either 300 or 600 kg total N ha−1 as liquid dairy manure, or 200 kg N ha−1 as inorganic fertilizer. Significant amounts of ammonium were present until late May following manure and until mid-June following fertilizer application, requiring simultaneous determination of both nitrate and ammonium concentrations to assess soil inorganic N contents during this period. Most of the changes in soil nitrate over time occurred in the top 30 cm, suggesting that sampling to 30 cm depth would be sufficient in most cases for a soil nitrate test in this region. Most of the increase in soil inorganic N associated with the spring application of manure occurred by 1 June. A soil nitrate test in early to mid-June when the corn is at the six leaf stage appeared to be most suitable for use in south coastal British Columbia to determine if additional fertilizer N is required. A sample taken at this time will measure soil nitrate contents just before the period of rapid corn N uptake, after most of the additional inorganic N associated with spring manure application is already present in the soil as nitrate, and after nitrification of the manure ammonium has occurred. Key words: N recovery, preplant nitrate test, pre-sidedress soil nitrate test


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 983
Author(s):  
Peyton Ginakes ◽  
Julie M. Grossman

Winter annual legume cover crops often fail to reach full maturity by spring vegetable planting dates in northern climates, which prevents maximum nitrogen (N) contributions. To determine if delayed termination improved cover crop biomass and N content, we evaluated winter rye + hairy vetch (Secale cereale L. + Vicia villosa Roth) and oat + field pea (Avena sativa L. + Pisum sativum L.) cover crop mixtures in 2015 and 2016, and medium red clover (Trifolium pratense L.) in 2016, in zone-tilled organic yellow crookneck squash (Cucurbita pepo var. torticollis Harz). In-row regions where cover crops were terminated in early spring during crop row preparation were compared to between-row regions where termination was delayed until legume maturation in late spring. Soil quality (soil inorganic N, permanganate oxidizable C (POXC), and potentially mineralizable N (PMN)) was also determined for in-row and between-row regions at four time points throughout the growing season. In 2015, winter rye + hairy vetch biomass N more than doubled between early and late termination times, with 120 and 258 kg N ha−1, respectively. Permanganate oxidizable C was not responsive to cover crop systems or tillage, and only slightly decreased over time in 2016. Soil inorganic N and PMN after cover crop termination in 2016 provided evidence of localized soil N cycling responses to cover crop termination in in-row and between-row regions. The extended growing period for cover crops between crop rows in the first several weeks of crop growth had no negative effect on crop yield, and appeared to enhance soil fertility.


2003 ◽  
Vol 13 (4) ◽  
pp. 598-604 ◽  
Author(s):  
S.S. Snapp ◽  
A.M. Fortuna

Growers lack practical decision aides that accurately predict nitrogen (N) credits for organic sources to adjust fertilizer rates. The simulation model, DSSAT, was used to predict N supply in relationship to N demand in irrigated potatoes (Solanum tuberosum). Tuber yield and soil inorganic N levels were substantially higher in the simulations than in field experiment observations, indicating the need for model improvement. DSSAT was successful at predicting relative mineralization rates and potato N uptake for different organic and inorganic N source combinations. Interestingly, both simulation and field experiment observations indicated that combining a high quality organic manure at 5000 lb/acre (5604.2 kg·ha-1), total applied N 250 lb/acre (280.2 kg·ha-1), and a fertilizer source of N 160 lb/acre (179.3 kg·ha-1) markedly increased yields and lowered leaching potential. Simulated tuber yield for the combined treatment was 660 cwt/acre (74.0 t·ha-1) with 48 lb/acre (53.8 kg·ha-1) inorganic-N in the profile at harvest, whereas the highest simulated N fertilizer response was to 235 lb/acre (263.4 kg.·ha-1), which produced 610 cwt/acre (68.4 t·ha-1) with 77 lb/acre (86.3 kg·ha-1) inorganic-N in the profile at harvest. The synchrony of N release and uptake for combined manure and fertilizer treatments may explain the efficient N uptake observed. Common soil types and weather scenarios in Michigan were simulated and indigenous soil N mineralization was predicted to be 6 lb/acre (6.7 kg·ha-1) inorganic-N in the topsoil at planting, similar to observed levels. The increasing aeration associated with a sandy versus a sandy loam soil only slightly increased the predicted rate of mineralization from organic inputs. Simulated soil inorganic N levels with different organic inputs was modestly increased in a warm spring [4.5 °F (2.50 °C) over normal temperatures] compared to a cool spring (-4.5 °F less than normal temperatures). For Michigan irrigated potato systems, DSSAT simulations indicate that the most important factor determining inorganic N supply will be the quality and quantity of organic inputs, not environmental conditions.


OENO One ◽  
2005 ◽  
Vol 39 (4) ◽  
pp. 163
Author(s):  
Pascal Thiebeau ◽  
Christian Herré ◽  
Anne-France Doledec ◽  
André Perraud ◽  
Laurent Panigai ◽  
...  

<p style="text-align: justify;">We studied the effect of soil cover (bare soil, mulch of barks or composted organic materials, grass cover) on soil N dynamics in various experimental vineyards located in Champagne area (France). Soil cores were sampled periodically to measure water and mineral N in soil profile during autumn and winter. These measurements were used in a simple dynamic model (LIXIM) to calculate nitrate leaching and N mineralization. N mineralization potential of soils were also determined in laboratory incubations in controlled conditions. In most sites, soil inorganic N contents (0-75 cm) varied between 20 and 60 kg N ha-1, depending of the season. Soil inorganic N in plots receiving barks or composted barks or covered with grass did not differ significantly from control plots. Higher amounts of inorganic N were found in soils amended with refuse compost, peat or mixed compost (barks + farmyard manure) or composted farmyard manure. The model indicated that N leached varied from 8 to 77 kg N ha-1 and that the mean nitrate concentration in drained water was less than 50 mg NO3- L-1 except for plots receiving refuse compost or bark + farmyard manure compost. The calculated N mineralization varied from 9 to 45 kg N ha-1 over the autumn-winter period, i.e. 118 to 182 days. The N mineralization rate (Vp), expressed per 'normalised day' i.e. day at 15°C and field capacity, varied from 0.15 to 0.82 kg N ha-1 nd-1, including all sites and experimental treatments. Effect of organic matter addition on Vp was only observed for long-term experimental sites where large amounts of organic nitrogen had been added to soil using peat, refuse compost or compost mixtures with barks and farmyard manure. The Vp values measured in laboratory incubations showed the same trends and were in the same order of magnitude than those calculated with LIXIM model using in situ data. In average, the values measured in laboratory incubations underestimated the actual N mineralization in field conditions. The model was used to predict N mineralization and inorganic N in soil during the vegetative period using Vp values. It allowed to estimate the N uptake by vine: 10 ± 5 kg N ha-1 at flowering and 57 ± 5 kg N ha-1 over the whole growing period. These results show that soil N availability was sufficient to feed the vine during the whole growing period and that no inorganic N fertilisation was necessary, even in the grass covered soil. In this soil, water availability is probably the limiting factor when depressive effects are observed. On the long-term, it is necessary to manage the amount and quality of added organic matter since organic inputs may modify N availability and therefore vine behaviour, wine quality and environmental risks.</p>


Sign in / Sign up

Export Citation Format

Share Document