scholarly journals Transforming Growth Factor Beta 3 Modifies Mechanics and Composition of Extracellular Matrix Deposited by Human Trabecular Meshwork Cells

2015 ◽  
Vol 1 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Vijay Krishna Raghunathan ◽  
Joshua T. Morgan ◽  
Yow-Ren Chang ◽  
Darren Weber ◽  
Brett Phinney ◽  
...  
1995 ◽  
Vol 108 (6) ◽  
pp. 2153-2162 ◽  
Author(s):  
J.F. Talts ◽  
A. Weller ◽  
R. Timpl ◽  
M. Ekblom ◽  
P. Ekblom

We have here studied the composition and regulation of stromal extracellular matrix components in an experimental tumor model. Nude mice were inoculated with WCCS-1 cells, a human Wilms' tumor cell line. In the formed tumors the stroma was found to contain mesenchymal extracellular matrix proteins such as tenascin-C, fibulins-1 and 2 and fibronectin, but no nidogen. Nidogen was confined to basement membranes of tumor blood vessels. Since glucocorticoids have been shown to downregulate tenascin-C expression in vitro, we tested whether dexamethasone can influence biosynthesis of extracellular matrix components during tumor formation in vivo. A downregulation of tenascin-C mRNA and an upregulation of fibronectin mRNA expression by dexamethasone was noted. Transforming growth factor-beta 1 mRNA levels were unaffected by the dexamethasone treatment. Glucocorticoids can thus downregulate tenascin-C synthesis although local stimulatory growth factors are present. The competition between a negative and a positive extrinsic factor on synthesis of stromal extracellular matrix components was studied in a fibroblast/preadipocyte cell line. Transforming growth factor-beta 1 stimulated tenascin-C synthesis but did not affect fibronectin or fibulin-2 synthesis. Dexamethasone at high concentrations could completely suppress the effect of transforming growth factor-beta 1 on tenascin-C mRNA expression. Transforming growth factor-beta 1 could in turn overcome the downregulation of tenascin-C mRNA expression caused by a lower concentration of dexamethasone. We therefore suggest that the limited expression of tenascin-C in part is due to a continuous suppression by physiological levels of glucocorticoids, which can be overcome by local stimulatory growth factors when present in sufficient amounts.


2018 ◽  
Vol 243 (7) ◽  
pp. 601-612 ◽  
Author(s):  
Nathan Cho ◽  
Shadi E Razipour ◽  
Megan L McCain

Cardiac fibroblasts and their activated derivatives, myofibroblasts, play a critical role in wound healing after myocardial injury and often contribute to long-term pathological outcomes, such as excessive fibrosis. Thus, defining the microenvironmental factors that regulate the phenotype of cardiac fibroblasts and myofibroblasts could lead to new therapeutic strategies. Both chemical and biomechanical cues have previously been shown to induce myofibroblast differentiation in many organs and species. For example, transforming growth factor beta 1, a cytokine secreted by neutrophils, and rigid extracellular matrix environments have both been shown to promote differentiation. However, the relative contributions of transforming growth factor beta 1 and extracellular matrix rigidity, two hallmark cues in many pathological myocardial microenvironments, to the phenotype of human cardiac fibroblasts are unclear. We hypothesized that transforming growth factor beta 1 and rigid extracellular matrix environments would potentially have a synergistic effect on the differentiation of human cardiac fibroblasts to myofibroblasts. To test this, we seeded primary human adult cardiac fibroblasts onto coverslips coated with polydimethylsiloxane of various elastic moduli, introduced transforming growth factor beta 1, and longitudinally quantified cell phenotype by measuring expression of α-smooth muscle actin, the most robust indicator of myofibroblasts. Our data indicate that, although extracellular matrix rigidity influenced differentiation after one day of transforming growth factor beta 1 treatment, ultimately transforming growth factor beta 1 superseded extracellular matrix rigidity as the primary regulator of myofibroblast differentiation. We also measured expression of POSTN, FAP, and FSP1, proposed secondary indicators of fibroblast/myofibroblast phenotypes. Although these genes partially trended with α-smooth muscle actin expression, they were relatively inconsistent. Finally, we demonstrated that activated myofibroblasts incompletely revert to a fibroblast phenotype after they are re-plated onto new surfaces without transforming growth factor beta 1, suggesting differentiation is partially reversible. Our results provide new insights into how microenvironmental cues affect human cardiac fibroblast differentiation in the context of myocardial pathology, which is important for identifying effective therapeutic targets and dictating supporting cell phenotypes for engineered human cardiac disease models. Impact statement Heart disease is the leading cause of death worldwide. Many forms of heart disease are associated with fibrosis, which increases extracellular matrix (ECM) rigidity and compromises cardiac output. Fibrotic tissue is synthesized primarily by myofibroblasts differentiated from fibroblasts. Thus, defining the cues that regulate myofibroblast differentiation is important for understanding the mechanisms of fibrosis. However, previous studies have focused on non-human cardiac fibroblasts and have not tested combinations of chemical and mechanical cues. We tested the effects of TGF-β1, a cytokine secreted by immune cells after injury, and ECM rigidity on the differentiation of human cardiac fibroblasts to myofibroblasts. Our results indicate that differentiation is initially influenced by ECM rigidity, but is ultimately superseded by TGF-β1. This suggests that targeting TGF-β signaling pathways in cardiac fibroblasts may have therapeutic potential for attenuating fibrosis, even in rigid microenvironments. Additionally, our approach can be leveraged to engineer more precise multi-cellular human cardiac tissue models.


1994 ◽  
Vol 266 (6) ◽  
pp. F829-F842 ◽  
Author(s):  
K. Sharma ◽  
F. N. Ziyadeh

Transforming growth factor-beta (TGF-beta) is a prototypical multifunctional cytokine, with growth being only one of its many functions. Its receptors and actions are germane to almost every cell in the body involved in tissue injury and repair, and its effects are best understood in the context of a cellular response to a changing environment. The broad areas in which TGF-beta plays a crucial role include cell proliferation and extracellular matrix production. TGF-beta is a key regulatory molecule in the control of the activity of fibroblasts and has been implicated in several disease states characterized by excessive fibrosis. In the kidney, TGF-beta promotes tubuloepithelial cell hypertrophy and regulates the glomerular production of almost every known molecule of the extracellular matrix, including collagens, fibronectin, tenascin, and proteoglycans, as well as the integrins that are the receptors for these molecules. Furthermore, TGF-beta blocks the destruction of newly synthesized extracellular matrix by upregulating the synthesis of protease inhibitors and downregulating the synthesis of matrix-degrading proteases such as stromelysin and collagenase. As will be discussed, there is a strong body of in vitro and in vivo evidence suggesting that persistent overproduction of TGF-beta 1 in glomeruli after the acute inflammatory stage of glomerulonephritis causes glomerulosclerosis. TGF-beta may also be important in a variety of other chronic renal disorders characterized by hypertrophy and sclerosis, such as diabetic nephropathy. In this review we will attempt to offer a basic understanding of the cellular and molecular biology of TGF-beta and its receptors, with special focus on the role of the TGF-beta system in the kidney during development, growth, and disease.


1990 ◽  
Vol 110 (6) ◽  
pp. 2209-2219 ◽  
Author(s):  
G B Silberstein ◽  
P Strickland ◽  
S Coleman ◽  
C W Daniel

Exogenous transforming growth factor beta (TGF-beta 1) was shown in earlier studies to reversibly inhibit mouse mammary ductal growth. Using small plastic implants to treat regions of developing mammary glands in situ, we now report that TGF-beta 1 growth inhibition is associated with an ectopic accumulation of type I collagen messenger RNA and protein, as well as the glycosaminoglycan, chondroitin sulfate. Both macromolecules are normal components of the ductal extracellular matrix, which, under the influence of exogenous TGF-beta 1, became unusually concentrated immediately adjacent to the epithelial cells at the tip of the ductal growth points, the end buds. Stimulation of extracellular matrix was confined to aggregations of connective tissue cells around affected end buds and was not present around the TGF-beta 1 implants themselves, indicating that the matrix effect was epithelium dependent. Ectopic matrix synthesis was specific for TGF-beta 1 insofar as it was absent at ducts treated with other growth inhibitors, or at ducts undergoing normal involution in response to endogenous regulatory processes. These findings are consistent with the matrix-stimulating properties of TGF-beta 1 reported for other systems, but differ in their strict dependence upon epithelium. A possible role for endogenous TGF-beta 1 in modulating a mammary epithelium-stroma interaction is suggested.


Sign in / Sign up

Export Citation Format

Share Document