scholarly journals High-Resolution Temperature−Concentration Diagram of α-Synuclein Conformation Obtained from a Single Förster Resonance Energy Transfer Image in a Microfluidic Device

2009 ◽  
Vol 81 (16) ◽  
pp. 6929-6935 ◽  
Author(s):  
Virginia Vandelinder ◽  
Allan Chris M. Ferreon ◽  
Yann Gambin ◽  
Ashok A. Deniz ◽  
Alex Groisman
Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 223
Author(s):  
Saveez Saffarian

This review highlights the significant observations of human immunodeficiency virus (HIV) assembly, release and maturation made possible with advanced light microscopy techniques. The advances in technology which now enables these light microscopy measurements are discussed with special emphasis on live imaging approaches including Total Internal Reflection Fluorescence (TIRF), high-resolution light microscopy techniques including PALM and STORM and single molecule measurements, including Fluorescence Resonance Energy Transfer (FRET). The review concludes with a discussion on what new insights and understanding can be expected from these measurements.


1995 ◽  
Vol 108 (3) ◽  
pp. 1051-1062 ◽  
Author(s):  
Z. Kam ◽  
T. Volberg ◽  
B. Geiger

Quantitative microscopic imaging of resonance energy transfer (RET) was applied for immunological high resolution proximity mapping of several cytoskeletal components of cell adhesions. To conduct this analysis, a microscopic system was developed, consisting of a highly stable field illuminator, computer-controlled filter wheels for rapid multiple-color imaging and a sensitive, high resolution CCD camera, enabling quantitative data recording and processing. Using this system, we have investigated the spatial inter-relationships and organization of four adhesion-associated proteins, namely vinculin, talin, alpha-actinin and actin. Cultured chick lens cells were double labeled for each of the junctional molecules, using fluorescein- and rhodamine-conjugated antibodies or phalloidin. RET images were acquired with fluorescein excitation and rhodamine emission filter setting, corrected for fluorescein and rhodamine fluorescence, and normalized to the fluorescein image. The results pointed to high local densities of vinculin, talin and F-actin in focal adhesions, manifested by mean RET values of 15%, 12% and 10%, respectively. On the other hand, relatively low values (less than 1%) were observed following double immunofluorescence labeling of the same cells for alpha-actinin. Double indirect labeling for pairs of these four proteins (using fluorophore-conjugated antibodies or phalloidin) resulted in RET values of 5% or lower, except for the pair alpha-actinin and actin, which yielded significantly higher values (13-15%). These results suggest that despite their overlapping staining patterns, at the level of resolution of the light microscope, the plaque proteins vinculin and talin are not homogeneously interspersed at the molecular level but form segregated clusters. alpha-Actinin, on the other hand, does not appear to form such clusters but, rather, closely interacts with actin. We discuss here the conceptual and applicative aspects of RET measurements and the implications of the results on the subcellular molecular organization of adherens-type junctions.


2003 ◽  
Vol 773 ◽  
Author(s):  
Aaron R. Clapp ◽  
Igor L. Medintz ◽  
J. Matthew Mauro ◽  
Hedi Mattoussi

AbstractLuminescent CdSe-ZnS core-shell quantum dot (QD) bioconjugates were used as energy donors in fluorescent resonance energy transfer (FRET) binding assays. The QDs were coated with saturating amounts of genetically engineered maltose binding protein (MBP) using a noncovalent immobilization process, and Cy3 organic dyes covalently attached at a specific sequence to MBP were used as energy acceptor molecules. Energy transfer efficiency was measured as a function of the MBP-Cy3/QD molar ratio for two different donor fluorescence emissions (different QD core sizes). Apparent donor-acceptor distances were determined from these FRET studies, and the measured distances are consistent with QD-protein conjugate dimensions previously determined from structural studies.


2020 ◽  
Author(s):  
Lucas S. Ryan ◽  
Jeni Gerberich ◽  
Uroob Haris ◽  
ralph mason ◽  
Alexander Lippert

<p>Regulation of physiological pH is integral for proper whole-body and cellular function, and disruptions in pH homeostasis can be both a cause and effect of disease. In light of this, many methods have been developed to monitor pH in cells and animals. In this study, we report a chemiluminescence resonance energy transfer (CRET) probe Ratio-pHCL-1, comprised of an acrylamide 1,2-dioxetane chemiluminescent scaffold with an appended pH-sensitive carbofluorescein fluorophore. The probe provides an accurate measurement of pH between 6.8-8.4, making it viable tool for measuring pH in biological systems. Further, its ratiometric output is independent of confounding variables. Quantification of pH can be accomplished both using common fluorimetry and advanced optical imaging methods. Using an IVIS Spectrum, pH can be quantified through tissue with Ratio-pHCL-1, which has been shown in vitro and precisely calibrated in sacrificed mouse models. Initial studies showed that intraperitoneal injections of Ratio-pHCL-1 into sacrificed mice produce a photon flux of more than 10^10 photons per second, and showed a significant difference in ratio of emission intensities between pH 6.0, 7.0, and 8.0.</p> <b></b><i></i><u></u><sub></sub><sup></sup><br>


2020 ◽  
Author(s):  
Brittany Benlian ◽  
Pavel Klier ◽  
Kayli Martinez ◽  
Marie Schwinn ◽  
Thomas Kirkland ◽  
...  

<p>We report a small molecule enzyme pair for optical voltage sensing via quenching of bioluminescence. This <u>Q</u>uenching <u>B</u>ioluminescent V<u>olt</u>age Indicator, or Q-BOLT, pairs the dark absorbing, voltage-sensitive dipicrylamine with membrane-localized bioluminescence from the luciferase NanoLuc (NLuc). As a result, bioluminescence is quenched through resonance energy transfer (QRET) as a function of membrane potential. Fusion of HaloTag to NLuc creates a two-acceptor bioluminescence resonance energy transfer (BRET) system when a tetramethylrhodamine (TMR) HaloTag ligand is ligated to HaloTag. In this mode, Q-BOLT is capable of providing direct visualization of changes in membrane potential in live cells via three distinct readouts: change in QRET, BRET, and the ratio between bioluminescence emission and BRET. Q-BOLT can provide up to a 29% change in bioluminescence (ΔBL/BL) and >100% ΔBRET/BRET per 100 mV change in HEK 293T cells, without the need for excitation light. In cardiac monolayers derived from human induced pluripotent stem cells (hiPSC), Q-BOLT readily reports on membrane potential oscillations. Q-BOLT is the first example of a hybrid small molecule – protein voltage indicator that does not require excitation light and may be useful in contexts where excitation light is limiting.</p> <p> </p>


2020 ◽  
Author(s):  
Brittany Benlian ◽  
Pavel Klier ◽  
Kayli Martinez ◽  
Marie Schwinn ◽  
Thomas Kirkland ◽  
...  

<p>We report a small molecule enzyme pair for optical voltage sensing via quenching of bioluminescence. This <u>Q</u>uenching <u>B</u>ioluminescent V<u>olt</u>age Indicator, or Q-BOLT, pairs the dark absorbing, voltage-sensitive dipicrylamine with membrane-localized bioluminescence from the luciferase NanoLuc (NLuc). As a result, bioluminescence is quenched through resonance energy transfer (QRET) as a function of membrane potential. Fusion of HaloTag to NLuc creates a two-acceptor bioluminescence resonance energy transfer (BRET) system when a tetramethylrhodamine (TMR) HaloTag ligand is ligated to HaloTag. In this mode, Q-BOLT is capable of providing direct visualization of changes in membrane potential in live cells via three distinct readouts: change in QRET, BRET, and the ratio between bioluminescence emission and BRET. Q-BOLT can provide up to a 29% change in bioluminescence (ΔBL/BL) and >100% ΔBRET/BRET per 100 mV change in HEK 293T cells, without the need for excitation light. In cardiac monolayers derived from human induced pluripotent stem cells (hiPSC), Q-BOLT readily reports on membrane potential oscillations. Q-BOLT is the first example of a hybrid small molecule – protein voltage indicator that does not require excitation light and may be useful in contexts where excitation light is limiting.</p> <p> </p>


Sign in / Sign up

Export Citation Format

Share Document