scholarly journals Label-Free Sub-picomolar Protein Detection with Field-Effect Transistors

2010 ◽  
Vol 82 (9) ◽  
pp. 3531-3536 ◽  
Author(s):  
Pedro Estrela ◽  
Debjani Paul ◽  
Qifeng Song ◽  
Lukas K. J. Stadler ◽  
Ling Wang ◽  
...  
2011 ◽  
Vol 160 (1) ◽  
pp. 154-160 ◽  
Author(s):  
Robert A. Croce Jr ◽  
Sagar Vaddiraju ◽  
Pik-Yiu Chan ◽  
Rea Seyta ◽  
Faquir C. Jain

2016 ◽  
Vol 60 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Vivek Pachauri ◽  
Sven Ingebrandt

Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element covered by a gate dielectric layer which is electronically sensitive to the (bio-)chemical changes that occur on its surface. This review will provide a brief overview of the history of ISFET biosensors with general operation concepts and sensing mechanisms. We also discuss silicon nanowire-based ISFETs (SiNW FETs) as the modern nanoscale version of classical ISFETs, as well as strategies to functionalize them with biologically sensitive layers. We include in our discussion other ISFET types based on nanomaterials such as carbon nanotubes, metal oxides and so on. The latest examples of highly sensitive label-free detection of deoxyribonucleic acid (DNA) molecules using SiNW FETs and single-cell recordings for drug screening and other applications of ISFETs will be highlighted. Finally, we suggest new device platforms and newly developed, miniaturized read-out tools with multichannel potentiometric and impedimetric measurement capabilities for future biomedical applications.


Carbon ◽  
2013 ◽  
Vol 62 ◽  
pp. 312-321 ◽  
Author(s):  
Jin Heak Jung ◽  
Il Yung Sohn ◽  
Duck Jin Kim ◽  
Bo Yeong Kim ◽  
Mi Jang ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Sooraj Sanjay ◽  
Mainul Hossain ◽  
Ankit Rao ◽  
Navakanta Bhat

AbstractIon-sensitive field-effect transistors (ISFETs) have gained a lot of attention in recent times as compact, low-cost biosensors with fast response time and label-free detection. Dual gate ISFETs have been shown to enhance detection sensitivity beyond the Nernst limit of 59 mV pH−1 when the back gate dielectric is much thicker than the top dielectric. However, the thicker back-dielectric limits its application for ultrascaled point-of-care devices. In this work, we introduce and demonstrate a pH sensor, with WSe2(top)/MoS2(bottom) heterostructure based double gated ISFET. The proposed device is capable of surpassing the Nernst detection limit and uses thin high-k hafnium oxide as the gate oxide. The 2D atomic layered structure, combined with nanometer-thick top and bottom oxides, offers excellent scalability and linear response with a maximum sensitivity of 362 mV pH−1. We have also used technology computer-aided (TCAD) simulations to elucidate the underlying physics, namely back gate electric field screening through channel and interface charges due to the heterointerface. The proposed mechanism is independent of the dielectric thickness that makes miniaturization of these devices easier. We also demonstrate super-Nernstian behavior with the flipped MoS2(top)/WSe2(bottom) heterostructure ISFET. The results open up a new pathway of 2D heterostructure engineering as an excellent option for enhancing ISFET sensitivity beyond the Nernst limit, for the next-generation of label-free biosensors for single-molecular detection and point-of-care diagnostics.


Small ◽  
2014 ◽  
Vol 10 (10) ◽  
pp. 2022-2028 ◽  
Author(s):  
Na Lu ◽  
Anran Gao ◽  
Pengfei Dai ◽  
Shiping Song ◽  
Chunhai Fan ◽  
...  

2015 ◽  
Vol 33 (8) ◽  
pp. 828-841 ◽  
Author(s):  
Lu Zhao ◽  
Dapeng Cao ◽  
Zhiqiang Gao ◽  
Baoxiu Mi ◽  
Wei Huang

2015 ◽  
Vol 11 (9) ◽  
pp. 1640-1643 ◽  
Author(s):  
Jae-Hyuk Ahn ◽  
Maesoon Im ◽  
Tae Jung Park ◽  
Sang Yup Lee ◽  
Yang-Kyu Choi

2007 ◽  
Vol 91 (10) ◽  
pp. 103901 ◽  
Author(s):  
Ansoon Kim ◽  
Chil Seong Ah ◽  
Han Young Yu ◽  
Jong-Heon Yang ◽  
In-Bok Baek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document