Strong Acids or Bases Displaced by Weak Acids or Bases in Aerosols: Reactions Driven by the Continuous Partitioning of Volatile Products into the Gas Phase

2021 ◽  
Vol 54 (19) ◽  
pp. 3667-3678
Author(s):  
Zhe Chen ◽  
Pai Liu ◽  
Yong Liu ◽  
Yun-Hong Zhang
2020 ◽  
Author(s):  
Zhe Chen ◽  
Na Wang ◽  
Shu-Feng Pang ◽  
Yun-Hong Zhang

<p>Due to significant influence on global climate and human health, atmospheric aerosols have attracted numerous interests from the atmospheric science community. To provide insight into the aerosol effect, it is indispensable to investigate the aerosol properties comprehensively.</p><p>Since atmospheric aerosols are surrounded by substantial gas phase and have high specific surface area, the composition partitioning between particle phase and gas phase must be considered as a key aerosol property, which is termed as volatility for volatile organic/inorganic components. Recent studies show that the aerosol volatility can also be induced by the reaction of components in addition to the volatile compositions. Herein, we summarize four types of volatility induced by reaction, namely chloride depletion, nitrate depletion, ammonia depletion and volatility induced by salt hydrolysis. For chloride depletion and nitrate depletion, these processes can be regarded as reactions that strong acids are substituted by weak acids. The high volatility of the formed HCl or HNO<sub>3</sub> drives the reaction continuously moving forward.</p><p>For ammonium depletion, we observed the reaction occurs between (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> and organic acid salts during dehydration process by ATR-FTIR. For example, when molar ratio is 1:1, significant depletion of ammonium was observed in the disodium succinate/(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> particles, indicating the evaporation of NH<sub>3</sub>. Besides, the hygroscopicity of the aerosol particles decreased after the dehydration, which should be attributed to the formation of less hygroscopic succinic acid and ammonium depletion. By regarding organic acid salts as weak bases, the ammonium depletion is a reaction that strong base substituted by weak base, driving by the continuous release of NH<sub>3</sub>. In addition to volatility induced by reactions within multi-component aerosols, we also found that the salt hydrolysis can also cause the formation of volatile product. For magnesium acetate (MgAc<sub>2</sub>) aerosols, we found significant water loss of the aerosol particles under constant relative humidity condition, while the amount of acetate was also decreased. We infer that the acetic acid (HAc) evaporation is caused by the hydrolysis of MgAc<sub>2</sub>, leading to the volatility and declined hygroscopicity. Two factors contribute to the volatility of MgAc<sub>2</sub> aerosols. One is the volatile acid donner (Ac<sup>2-</sup>), which can lead to the formation of volatile HAc. The other is the residual ion accepter (Mg<sup>2+</sup>), which can combine residual OH<sup>-</sup> after the proton is depleted by the evaporation of HAc. The formation of insoluble Mg(OH)<sub>2</sub> effectively maintains the aqueous pH in a suitable range, keeping the reaction moving forward. It should be noted that the co-exist of volatile acid donner and residual ion accepter is indispensable for the volatility induced by hydrolysis.</p><p>Generally, for the volatile species present in atmosphere, the aerosol volatility induced by the reaction of components can be an important pathway for their recycling processes. Due to the substantial composition modification, the hygroscopicity is also affected by such reaction. Therefore, this partitioning behavior of aerosols needs to be considered in the future atmospheric aerosol study, which may prevent the underestimate of particle volatilization or overestimate of hygroscopicity.</p>


2020 ◽  
Vol 9 (3) ◽  
pp. 148-157
Author(s):  
Bayu Riswanto ◽  
Sitti Aminah

Kalpataru flower (Hura crepitans Linn) is an anthocyanin-containing plant. This study aims to utilize extract from the kalpataru flower as an alternative acid base indicator and determine the type of acid-base titration suitable for extracting the kalpataru flower indicator. Kalpataru flowers are macerated with methanol solvent for around 2 hours. Kalpataru flower extract was tested as an indicator in acid-base solution, buffer, and compared with phenolphthalein and methyl orange for acid-base titration, namely: strong acids with strong bases, weak acids with strong bases, and weak bases with strong acids. The results obtained in this study were: indicator extract of brownish yellow kalpataru flowers, in strong red acids, in strong bases of dark green, in weak pink acids, and in weak bases in light green. In the buffer, the indicator extract of the kalpataru flower has a range of pH pH 4-5 (pink-colorless) and pH 9-11 (yellowish green-dark green). The indicator of kalpataru flower extract can be used on strong acid titration with strong bases, weak acids with strong bases and weak bases with strong acids. Kalpataru flower extract can be used as an acid-base indicator.


1976 ◽  
Vol 54 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Bansi L. Kalra ◽  
Arthur R. Knight

The triplet cadmium photosensitized decomposition of cyclopentane in the vapor phase has been studied at 355 °C and has been shown to give rise to cyclopentyl radicals and hydrogen atoms with close to unit efficiency in the primary process. Subsequent reactions of these species, including an important contribution from unimolecular decomposition of cyclopentyl radicals, yield the observed volatile products, hydrogen, methane, ethylene, ethane, propylene, and cyclopentene. As a result of significant olefin scavenging of H-atoms product yields are strongly time dependent. The system has been shown to be unaffected by addends. The temperature dependence of the rate of product formation is consistent with the known energetics of cyclopentyl radical decomposition.


The Analyst ◽  
2015 ◽  
Vol 140 (2) ◽  
pp. 661-669 ◽  
Author(s):  
Jong Wha Lee ◽  
Hugh I. Kim

Strong acids and weak acids differently affect the structure of lysozyme during electrospray ionization.


Investigations have been made of the thermal degradation of polyethylene and polypropylene in atmospheres containing oxygen and special attention has been paid to the influence of bromine on the various reactions concerned. Measurements in a static system show that neither bromine incorporated into the polymer nor hydrogen bromide in the surrounding gaseous atmosphere has any appreciable influence on the rate of mass loss, although the presence of the halogen compound does affect the nature of the volatile products formed during oxidation. Detailed chemical analysis has been carried out in a flow system in which molten polymer is injected into a flowing gas mixture of known oxygen content. The results obtained by different experimental procedures make it possible to determine the extents to which oxidation takes place in both the liquid and gaseous phases and to elucidate the action of hydrogen bromide on the reactions in the two phases. It is shown that with polyethylene and polypropylene considerable uptake of oxygen occurs in the liquid phase but some further oxidation generally takes place in the gas phase. With both the polymers hydrogen bromide decreases the overall oxygen uptake. However, with polyethylene the halogen compound promotes oxidation in the liquid phase but acts as a powerful inhibitor of subsequent oxidation in the gas phase. In contrast, with polypropylene, as little as 1 % of hydrogen bromide suppresses almost completely uptake of oxygen by the liquid but may promote oxidation in the gas phase to such an extent that ignition takes place above the molten polymer. The contrasting inhibiting and promoting effects of bromine on the oxidation of the two polymers are considered in the light of the probable elementary chemical steps involved and the relevance of the results to the mechanism of burning of polyolefins is discussed.


2011 ◽  
Vol 11 (9) ◽  
pp. 24969-25010 ◽  
Author(s):  
C. L. Loza ◽  
P. S. Chhabra ◽  
L. D. Yee ◽  
J. S. Craven ◽  
R. C. Flagan ◽  
...  

Abstract. Secondary organic aerosol (SOA) can reside in the atmosphere for a week or more. While its initial formation from the gas-phase oxidation of volatile organic compounds tends to take place in the first few hours after emission, SOA can continue to evolve chemically over its atmospheric lifetime. Simulating this chemical aging over an extended time in the laboratory has proven to be challenging. We present here a procedure for studying SOA aging in laboratory chambers that is applied to achieve 36 h of oxidation. The formation and evolution of SOA from the photooxidation of m-xylene under low-NOx conditions and in the presence of either neutral or acidic seed particles is studied. In SOA aging, increasing molecular functionalization leads to less volatile products and an increase in SOA mass, whereas gas-phase or particle-phase fragmentation chemistry results in more volatile products and a loss of SOA. The challenge is to discern from measured chamber variables the extent to which these processes are important for a given SOA system. In the experiments conducted, m-xylene SOA mass increased over the initial 12-h of photooxidation and decreased beyond that time. The oxidation of the SOA, as manifested in the O:C elemental ratio and fraction of organic ion detected at m/z 44 measured by the Aerodyne aerosol mass spectrometer, decreased during the first 5 h of reaction, reached a minimum, and then increased continuously until the 36 h termination. This behavior is consistent with an initial period in which, as the mass of SOA increases, products of higher volatility partition to the aerosol phase, followed by an aging period in which gas- and particle-phase reaction products become increasingly more oxidized. After about 12–13 h, the SOA mass reaches a maximum and decreases, suggesting the existence of fragmentation chemistry. When irradiation is stopped 12.4 h into one experiment, and OH generation ceases, no loss of SOA is observed, indicating that the loss of SOA is either light- or OH-induced. Chemical ionization mass spectrometry measurements of low-volatility m-xylene oxidation products exhibit behavior indicative of continuous photooxidation chemistry. A condensed chemical mechanism of m-xylene oxidation under low-NOx conditions is capable of reproducing the general behavior of gas-phase evolution observed here. Moreover, order of magnitude analysis of the mechanism suggests that gas-phase OH reaction of low volatility SOA precursors is the dominant pathway of aging in the m-xylene system although OH reaction with particle surfaces cannot be ruled out.


1994 ◽  
Vol 57 (7) ◽  
pp. 626-628 ◽  
Author(s):  
LISA K. DIMMIG ◽  
ERIC R. MYERS ◽  
SCOTT E. MARTIN

Cells of Listeria monocytogenes 10403S were propagated at 37°C in media acidified with either acetic or hydrochloric acid to determine the effect on the production of catalase (CA), superoxide dismutase (SOD) and listeriolysin O (LLO). The CA and LLO activities decreased while SOD activity increased as the pH of the growth media was decreased. Comparison of the acids indicated that neither acid caused significant differences in enzyme production except for SOD activity at pH 5.7. These results suggest that growth of L. monocytogenes in acid environments may influence the production of these enzymes, while growth in strong acids versus weak acids may not be significantly different.


Sign in / Sign up

Export Citation Format

Share Document