The influence of bromine compounds on the combustion of polyolefins II. Effects on the oxidative degradation

Investigations have been made of the thermal degradation of polyethylene and polypropylene in atmospheres containing oxygen and special attention has been paid to the influence of bromine on the various reactions concerned. Measurements in a static system show that neither bromine incorporated into the polymer nor hydrogen bromide in the surrounding gaseous atmosphere has any appreciable influence on the rate of mass loss, although the presence of the halogen compound does affect the nature of the volatile products formed during oxidation. Detailed chemical analysis has been carried out in a flow system in which molten polymer is injected into a flowing gas mixture of known oxygen content. The results obtained by different experimental procedures make it possible to determine the extents to which oxidation takes place in both the liquid and gaseous phases and to elucidate the action of hydrogen bromide on the reactions in the two phases. It is shown that with polyethylene and polypropylene considerable uptake of oxygen occurs in the liquid phase but some further oxidation generally takes place in the gas phase. With both the polymers hydrogen bromide decreases the overall oxygen uptake. However, with polyethylene the halogen compound promotes oxidation in the liquid phase but acts as a powerful inhibitor of subsequent oxidation in the gas phase. In contrast, with polypropylene, as little as 1 % of hydrogen bromide suppresses almost completely uptake of oxygen by the liquid but may promote oxidation in the gas phase to such an extent that ignition takes place above the molten polymer. The contrasting inhibiting and promoting effects of bromine on the oxidation of the two polymers are considered in the light of the probable elementary chemical steps involved and the relevance of the results to the mechanism of burning of polyolefins is discussed.

OENO One ◽  
2006 ◽  
Vol 40 (1) ◽  
pp. 35 ◽  
Author(s):  
Jean-Claude Vidal ◽  
Michel Moutounet

<p style="text-align: justify;">The assaying of oxygen in the headspace of a bottle combined with that of dissolved oxygen in the wine makes it possible to obtain the total oxygen per bottle. The first analyses performed at bottling show that 0.38 to 3.58 mg oxygen per bottle is trapped in the headspace. Operating conditions account for these substantial variations. Monitoring the oxygen contents in the liquid and gas phases of three batches of wine over a period of several months and the analysis of old bottles show that the headspace functions as an oxygen reserve for the wine, that is to say that as the wine uses oxygen, there is passage of the gas from the headspace to the wine. This is related to a movement towards a balance between the two phases as the partial pressure of oxygen in the gas phase is always greater than that of the liquid phase. Finally, this gas exchange kinetics within the bottle outweighs the kinetics of penetration of the bottle by oxygen in the external atmosphere, at least while the total oxygen trapped at bottling has not been used up.</p>


1991 ◽  
Vol 24 (7) ◽  
pp. 277-284 ◽  
Author(s):  
E. Gomólka ◽  
B. Gomólka

Whenever possible, neutralization of alkaline wastewater should involve low-cost acid. It is conventional to make use of carbonic acid produced via the reaction of carbon dioxide (contained in flue gases) with water according to the following equation: Carbon dioxide content in the flue gas stream varies from 10% to 15%. The flue gas stream may either be passed to the wastewater contained in the recarbonizers, or. enter the scrubbers (which are continually sprayed with wastewater) from the bottom in oountercurrent. The reactors, in which recarbonation occurs, have the ability to expand the contact surface between gaseous and liquid phase. This can be achieved by gas phase dispersion in the liquid phase (bubbling), by liquid phase dispersion in the gas phase (spraying), or by bubbling and spraying, and mixing. These concurrent operations are carried out during motion of the disk aerator (which is a patent claim). The authors describe the functioning of the disk aerator, the composition of the wastewater produced during wet gasification of carbide, the chemistry of recarbonation and decarbonation, and the concept of applying the disk aerator so as to make the wastewater fit for reuse (after suitable neutralization) as feeding water in acetylene generators.


1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


1986 ◽  
Vol 51 (6) ◽  
pp. 1222-1239 ◽  
Author(s):  
Pavel Moravec ◽  
Vladimír Staněk

Expression have been derived in the paper for all four possible transfer functions between the inlet and the outlet gas and liquid steams under the counter-current absorption of a poorly soluble gas in a packed bed column. The transfer functions have been derived for the axially dispersed model with stagnant zone in the liquid phase and the axially dispersed model for the gas phase with interfacial transport of a gaseous component (PDE - AD). calculations with practical values of parameters suggest that only two of these transfer functions are applicable for experimental data evaluation.


1981 ◽  
Vol 46 (8) ◽  
pp. 1941-1946 ◽  
Author(s):  
Karel Setínek

A series of differently crosslinked macroporous 2,3-epoxypropyl methacrylate-ethylenedimethacrylate copolymers with chemically bonded propylsulphonic acid groups were used as catalysts for the kinetic study of reesterification of ethyl acetate by n-propanol in the liquid phase at 52 °C and in the gas phase at 90 °C. Analysis of kinetic data by the method of nonlinear regression for a series of equations of the Langmuir-Hinshelwood type showed that kinetic equations which describe best the course of the reaction are the same as for the earlier studied sulphonated macroporous styrene-divinylbenzene copolymers. Compared types of catalysts differ, however, in the dependence of their activity on the degree of crosslinking of the copolymer used.


1960 ◽  
Vol 38 (11) ◽  
pp. 2196-2202 ◽  
Author(s):  
N. A. Warner ◽  
T. R. Ingraham

The gas pressures over samples of anhydrous ferric sulphate and anhydrous aluminum sulphate have been measured in a static system, using a mercury manometer in which the exposed surface was covered with a flexible Pyrex bellows. The calculated ΔH for the decomposition of Fe2(SO4)3 was +135.4 kcal/mole. It was not possible to calculate the ΔH for the Al2(SO4)3 decomposition, because a discrete aluminum oxide with singular thermodynamic properties was not obtained.In the Fe2(SO4)3 system, the fraction of SO3 in the gas phase was found to be almost constant over the range of temperature and pressure changes used in the study.At any given temperature, the decomposition pressure over a ferric sulphate sample is greater than that over an aluminum sulphate sample, thus indicating that preferential decomposition of ferric sulphate should be thermodynamically feasible in mixtures of ferric sulphate and aluminum sulphate.


1969 ◽  
Vol 47 (22) ◽  
pp. 4175-4182 ◽  
Author(s):  
B. D. Boss ◽  
R. N. Hazlett

The 5-h oxidation of n-dodecane at 200 °C by air at 1 atm is reported for experiments in a borosilicate glass reaction chamber equipped with a gas bubbler. The rate of reaction was limited by the rate of oxygen diffusion from the gas phase due to the rapid reaction of dissolved oxygen. The reaction products were analyzed in aliquots taken periodically from the reaction chamber. Chemical analyses, gas–liquid phase chromatography (g.l.p.c.), tandem g.l.p.c.-mass spectroscopy, infrared, and ultraviolet were used to identify products accounting for 98% of the oxygen reacted. The isomer distribution of the dodecenes, dodecanols, and dodecanones formed, as well as the distribution of carboxylic acids, were determined. Three classes of intramolecular reaction products, cyclic ethers, cyclic hydrocarbons, and lactones, were detected. Many volatile products were detected. A filterable precipitate obtained after 10 h of oxidation was studied using infrared attenuated total reflectance techniques. A reaction mechanism is discussed based on current knowledge of other systems, the products identified, and the stoichiometry of the reaction.


1968 ◽  
Vol 46 (20) ◽  
pp. 3235-3240 ◽  
Author(s):  
Gordon R. Freeman ◽  
E. Diane Stover

The initial yields of the major products of the gamma radiolysis of liquid methylcyclopentane (MCP) at 25° are: G(H2) = 4.2, G(1-methylcyclopentene plus methylenecyclopentane) = 2.7, G(3- plus 4-methyl-cyclopentene) = 1.0, G(open chain hexene) = 1.0, and G(bimethylcyclopentyl) = 0.9. The effects of scavengers on the product yields are reported and the mechanism is discussed.The liquid phase radiolytic decompositions of cyclohexane (CH), methylcyclohexane (MCH), cyclopentane (CP), and MCP are compared. The net amount of C—C bond cleavage is much greater in the five-membered than in the six-membered rings. Methyl substitution on the ring reduces G(H2) by about one unit, mainly because of the formation of a type of ion (QH+) that does not yield hydrogen when neutralized by an electron. The QH+ type ions are formed in MCH and MCP, but not in CH and CP. In all the systems, another type of ion (N+) that does not yield hydrogen when neutralized by an electron is formed with a G value of about unity. The type of ion (PH+) that does yield hydrogen when neutralized by an electron has a G value of 3.4 in CH and CP, but only 2.0 in MCP. It is concluded that G(total ionization) is in the vicinity of 4.4 in the liquid compounds, virtually the same as the gas phase values.


1968 ◽  
Vol 21 (10) ◽  
pp. 2385 ◽  
Author(s):  
RL Johnson ◽  
VR Stimson

The gas-phase decomposition of 2,3-dimethylbutan-2-ol into 2,3-dimethylbut-1-ene, 2,3-dimethylbut-2-ene, and water, catalysed by hydrogen bromide at 303-400�, is described. The rate is first-order in each reactant and the Arrhenius equation k2 = 1011.88 exp(-26490/RT) sec-l ml mole-1 is followed. The olefins appear to be in their equilibrium proportions. The effects of substitutions in the alcohol at Cα and Cβ on the rate are discussed.


Sign in / Sign up

Export Citation Format

Share Document