Diffractive Protein Gratings as Optically Active Transducers for High-Throughput Label-free Immunosensing

2017 ◽  
Vol 89 (17) ◽  
pp. 9002-9008 ◽  
Author(s):  
Miquel Avella-Oliver ◽  
Javier Carrascosa ◽  
Rosa Puchades ◽  
Ángel Maquieira
2021 ◽  
Vol 22 (9) ◽  
pp. 4417
Author(s):  
Lester J Lambert ◽  
Stefan Grotegut ◽  
Maria Celeridad ◽  
Palak Gosalia ◽  
Laurent JS De Backer ◽  
...  

Many human diseases are the result of abnormal expression or activation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Not surprisingly, more than 30 tyrosine kinase inhibitors (TKIs) are currently in clinical use and provide unique treatment options for many patients. PTPs on the other hand have long been regarded as “undruggable” and only recently have gained increased attention in drug discovery. Striatal-enriched tyrosine phosphatase (STEP) is a neuron-specific PTP that is overactive in Alzheimer’s disease (AD) and other neurodegenerative and neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, and fragile X syndrome. An emergent model suggests that the increase in STEP activity interferes with synaptic function and contributes to the characteristic cognitive and behavioral deficits present in these diseases. Prior efforts to generate STEP inhibitors with properties that warrant clinical development have largely failed. To identify novel STEP inhibitor scaffolds, we developed a biophysical, label-free high-throughput screening (HTS) platform based on the protein thermal shift (PTS) technology. In contrast to conventional HTS using STEP enzymatic assays, we found the PTS platform highly robust and capable of identifying true hits with confirmed STEP inhibitory activity and selectivity. This new platform promises to greatly advance STEP drug discovery and should be applicable to other PTP targets.


2021 ◽  
pp. 247255522110006
Author(s):  
Michael D. Scholle ◽  
Zachary A. Gurard-Levin

Arginase-1, an enzyme that catalyzes the reaction of L-arginine to L-ornithine, is implicated in the tumor immune response and represents an interesting therapeutic target in immuno-oncology. Initiating arginase drug discovery efforts remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for arginase activity. The assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z-factor > 0.8) and a significant assay window [signal-to-background ratio > 20] relative to fluorescent approaches. To validate the assay, the inhibition of the reference compound nor-NOHA (Nω-hydroxy-nor-L-arginine) was evaluated, and the IC50 measured to be in line with reported results (IC50 = 180 nM). The assay was then used to complete a screen of 175,000 compounds, demonstrating the high-throughput capacity of the approach. The label-free format also eliminates opportunities for false-positive results due to interference from library compounds and optical readouts. The assay methodology described here enables new opportunities for drug discovery for arginase and, due to the assay flexibility, can be more broadly applicable for measuring other amino acid–metabolizing enzymes.


APOPTOSIS ◽  
2014 ◽  
Vol 19 (9) ◽  
pp. 1411-1418 ◽  
Author(s):  
Obaid Aftab ◽  
Madiha Nazir ◽  
Mårten Fryknäs ◽  
Ulf Hammerling ◽  
Rolf Larsson ◽  
...  

ACS Omega ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 14814-14823 ◽  
Author(s):  
Katrin M. Krebs ◽  
Eva M. Pfeil ◽  
Katharina Simon ◽  
Manuel Grundmann ◽  
Felix Häberlein ◽  
...  

2017 ◽  
Vol 22 (10) ◽  
pp. 1203-1210 ◽  
Author(s):  
Katrin Beeman ◽  
Jens Baumgärtner ◽  
Manuel Laubenheimer ◽  
Karlheinz Hergesell ◽  
Martin Hoffmann ◽  
...  

Mass spectrometry (MS) is known for its label-free detection of substrates and products from a variety of enzyme reactions. Recent hardware improvements have increased interest in the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for high-throughput drug discovery. Despite interest in this technology, several challenges remain and must be overcome before MALDI-MS can be integrated as an automated “in-line reader” for high-throughput drug discovery. Two such hurdles include in situ sample processing and deposition, as well as integration of MALDI-MS for enzymatic screening assays that usually contain high levels of MS-incompatible components. Here we adapt our c-MET kinase assay to optimize for MALDI-MS compatibility and test its feasibility for compound screening. The pros and cons of the Echo (Labcyte) as a transfer system for in situ MALDI-MS sample preparation are discussed. We demonstrate that this method generates robust data in a 1536-grid format. We use the MALDI-MS to directly measure the ratio of c-MET substrate and phosphorylated product to acquire IC50 curves and demonstrate that the pharmacology is unaffected. The resulting IC50 values correlate well between the common label-based capillary electrophoresis and the label-free MALDI-MS detection method. We predict that label-free MALDI-MS-based high-throughput screening will become increasingly important and more widely used for drug discovery.


2017 ◽  
Vol 22 (10) ◽  
pp. 1246-1252 ◽  
Author(s):  
Kishore Kumar Jagadeesan ◽  
Simon Ekström

Recently, mass spectrometry (MS) has emerged as an important tool for high-throughput screening (HTS) providing a direct and label-free detection method, complementing traditional fluorescent and colorimetric methodologies. Among the various MS techniques used for HTS, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides many of the characteristics required for high-throughput analyses, such as low cost, speed, and automation. However, visualization and analysis of the large datasets generated by HTS MALDI-MS can pose significant challenges, especially for multiparametric experiments. The datasets can be generated fast, and the complexity of the experimental data (e.g., screening many different sorbent phases, the sorbent mass, and the load, wash, and elution conditions) makes manual data analysis difficult. To address these challenges, a comprehensive informatics tool called MALDIViz was developed. This tool is an R-Shiny-based web application, accessible independently of the operating system and without the need to install any program locally. It has been designed to facilitate easy analysis and visualization of MALDI-MS datasets, comparison of multiplex experiments, and export of the analysis results to high-quality images.


Author(s):  
Michela Zuffo ◽  
Aurélie Gandolfini ◽  
Brahim Heddi ◽  
Anton Granzhan

ABSTRACTDNA is polymorphic since, despite its ubiquitous presence as a double-stranded helix, it is able to fold into a plethora of other secondary structures both in vitro and in cells. Despite the considerable advances that have been made in understanding this structural diversity, its high-throughput investigation still faces severe limitations. This mainly stems from the lack of suitable label-free methods, combining a fast and cheap experimental workflow with high information content. Here, we explore the use of intrinsic fluorescence emitted by nucleic acids for this scope. After a preliminary assessment of the suitability of this phenomenon for tracking the conformational changes of DNA, we examined the intrinsic steady-state emission spectra of an 89-membered set of synthetic oligonucleotides with reported conformation (G-quadruplexes, i-motifs, single- and double stranded DNA) by means of multivariate analysis. Specifically, principal component analysis of emission spectra resulted in successful clustering of oligonucleotides into three corresponding conformational groups, albeit without discrimination between single- and double-stranded structures. Linear discriminant analysis of the same training set was exploited for the assessment of new sequences, allowing the evaluation of their G4-forming propensity. Our method does not require any labelling agent or dye, avoiding the related intrinsic bias, and can be utilized to screen novel sequences of interest in a high-throughput and cost-effective manner. In addition, we observed that left-handed (Z-) G4 structures were systematically more fluorescent than most other G4 structures, almost reaching the quantum yield of 5′-d[(G3T)3G3]-3′ (G3T), the most fluorescent G4 structure reported to date. This property is likely to arise from the similar base-stacking geometry in both types of structures.


2008 ◽  
Author(s):  
Cheng Deng ◽  
Guoliang Huang ◽  
Shukuan Xu ◽  
Jing Zhu ◽  
Rui Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document