lysosomal proteolysis
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 12)

H-INDEX

28
(FIVE YEARS 2)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009911
Author(s):  
Lukas Habernig ◽  
Filomena Broeskamp ◽  
Andreas Aufschnaiter ◽  
Jutta Diessl ◽  
Carlotta Peselj ◽  
...  

The capacity of a cell to maintain proteostasis progressively declines during aging. Virtually all age-associated neurodegenerative disorders associated with aggregation of neurotoxic proteins are linked to defects in the cellular proteostasis network, including insufficient lysosomal hydrolysis. Here, we report that proteotoxicity in yeast and Drosophila models for Parkinson’s disease can be prevented by increasing the bioavailability of Ca2+, which adjusts intracellular Ca2+ handling and boosts lysosomal proteolysis. Heterologous expression of human α-synuclein (αSyn), a protein critically linked to Parkinson’s disease, selectively increases total cellular Ca2+ content, while the levels of manganese and iron remain unchanged. Disrupted Ca2+ homeostasis results in inhibition of the lysosomal protease cathepsin D and triggers premature cellular and organismal death. External administration of Ca2+ reduces αSyn oligomerization, stimulates cathepsin D activity and in consequence restores survival, which critically depends on the Ca2+/calmodulin-dependent phosphatase calcineurin. In flies, increasing the availability of Ca2+ discloses a neuroprotective role of αSyn upon manganese overload. In sum, we establish a molecular interplay between cathepsin D and calcineurin that can be activated by Ca2+ administration to counteract αSyn proteotoxicity.


2021 ◽  
Author(s):  
Tyler R. Lambeth ◽  
Ryan R. Julian

Aggregation of amyloid-beta (A) into extracellular plaques is a well-known hallmark of Alzheimers disease (AD). Similarly, autophagic vacuoles, autophagosomes, and other residual bodies within dystrophic neurites, though more difficult to detect, are characteristic features of AD. To explore the potential intersection between these observations, we conducted experiments to assess whether A fibril formation disrupts lysosomal proteolysis. Fibrils constituted from either A 1-40 or A 1-42 were grown under both neutral and acidic pH. The extent of proteolysis by individual cathepsins (L, D, B, and H) was monitored by both thioflavin T fluorescence and liquid-chromatography combined with mass spectrometry. The results show that all A fibrils are resistant to cathepsin digestion, with significant amounts of undigested material remaining for samples of fibrils grown in both neutral and acidic pH. Further analysis revealed that the neutral-grown fibrils are proteolytically resistant throughout the sequence, while the acid-grown fibrils prevented digestion primarily in the C-terminal portion of the sequence. Fibrils grown from A 1-42 are generally more resistant to degradation compared to A 1-40. Overall, the results indicate that A fibrils formed in the neutral pH environments found in intracellular or extracellular spaces may pose the greatest difficulty for complete digestion by the lysosome, particularly when the fibrils are comprised of A 1-42.


2020 ◽  
Author(s):  
Hua Sang ◽  
Jiali Liu ◽  
Fang Zhou ◽  
Xiaofang Zhang ◽  
Jingwei Zhang ◽  
...  

<p></p><p>Key events including antibody-antigen affinity, ADC internalization, trafficking and lysosomal proteolysis-mediated payload release combinatorially determine the therapeutic efficacy and safety for ADCs. Nevertheless, a universal technology that efficiently and conveniently evaluates the involvement of these above elements to ADC payload release and hence the final therapeutic outcomes for mechanistic studies and quality assessment is lacking. Considering the plethora of ADC candidates under development owing to the ever-evolving linker and drug chemistry, we developed a TArget-Responsive Subcellular Catabolism (TARSC) approach that measures catabolites kinetics for given ADCs and elaborates how each individual step ranging from antigen binding to lysosomal proteolysis affects ADC catabolism by targeted interferences. Using a commercial and a biosimilar ado-trastuzumab emtansine (T-DM1) as model ADCs, we recorded unequivocal catabolites kinetics for the two T-DM1s in the presence and absence of the targeted interferences. Their negligible differences in TARSC profiles fitting with their undifferentiated therapeutic outcomes suggested by <i>in vitro</i> viability assays and <i>in vivo</i> tumor growth assays, highlighting TARSC analysis as a good indicator of ADC efficacy and bioequivalency. Lastly, we demonstrated the use of TARSC in assessing payload release efficiency for a new Trastuzumab-toxin conjugate. Collectively, we demonstrated the use of TARSC in characterizing ADC catabolism at (sub)cellular level, and in systematically depicting whether given target proteins affect ADC payload release and hence therapeutic efficacy. We anticipate its future use in high-throughput screening, quality assessment and mechanistic understanding of ADCs for drug R&D before proceeding to costly <i>in vivo</i> experiments.</p><br><p></p>


2020 ◽  
Author(s):  
Hua Sang ◽  
Jiali Liu ◽  
Fang Zhou ◽  
Xiaofang Zhang ◽  
Jingwei Zhang ◽  
...  

<p></p><p>Key events including antibody-antigen affinity, ADC internalization, trafficking and lysosomal proteolysis-mediated payload release combinatorially determine the therapeutic efficacy and safety for ADCs. Nevertheless, a universal technology that efficiently and conveniently evaluates the involvement of these above elements to ADC payload release and hence the final therapeutic outcomes for mechanistic studies and quality assessment is lacking. Considering the plethora of ADC candidates under development owing to the ever-evolving linker and drug chemistry, we developed a TArget-Responsive Subcellular Catabolism (TARSC) approach that measures catabolites kinetics for given ADCs and elaborates how each individual step ranging from antigen binding to lysosomal proteolysis affects ADC catabolism by targeted interferences. Using a commercial and a biosimilar ado-trastuzumab emtansine (T-DM1) as model ADCs, we recorded unequivocal catabolites kinetics for the two T-DM1s in the presence and absence of the targeted interferences. Their negligible differences in TARSC profiles fitting with their undifferentiated therapeutic outcomes suggested by <i>in vitro</i> viability assays and <i>in vivo</i> tumor growth assays, highlighting TARSC analysis as a good indicator of ADC efficacy and bioequivalency. Lastly, we demonstrated the use of TARSC in assessing payload release efficiency for a new Trastuzumab-toxin conjugate. Collectively, we demonstrated the use of TARSC in characterizing ADC catabolism at (sub)cellular level, and in systematically depicting whether given target proteins affect ADC payload release and hence therapeutic efficacy. We anticipate its future use in high-throughput screening, quality assessment and mechanistic understanding of ADCs for drug R&D before proceeding to costly <i>in vivo</i> experiments.</p><br><p></p>


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3005
Author(s):  
Steffan T. Nawrocki ◽  
Wei Wang ◽  
Jennifer S. Carew

Autophagy is a mechanism of lysosomal proteolysis that is utilized to degrade damaged organelles, proteins, and other cellular components. Although key studies demonstrate that autophagy functions as a mechanism of tumor suppression via the degradation of defective pre-malignant cells, autophagy can also be used as a mechanism to break down cellular components under stress conditions to generate the required metabolic materials for cell survival. Autophagy has emerged as an important mediator of resistance to radiation, chemotherapy, and targeted agents. This series of articles highlight the role of autophagy in cancer progression and drug resistance and underscores the need for new and more effective agents that target this process.


2020 ◽  
Vol 219 (12) ◽  
Author(s):  
S. Joseph Endicott ◽  
Zachary J. Ziemba ◽  
Logan J. Beckmann ◽  
Dennis N. Boynton ◽  
Richard A. Miller

Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis, where individual peptides, recognized by a consensus motif, are translocated directly across the lysosomal membrane. CMA regulates the abundance of many disease-related proteins, with causative roles in neoplasia, neurodegeneration, hepatosteatosis, and other pathologies relevant to human health and aging. At the lysosomal membrane, CMA is inhibited by Akt-dependent phosphorylation of the CMA regulator GFAP. The INS-PI3K-PDPK1 pathway regulates Akt, but its role in CMA is unclear. Here, we report that inhibition of class I PI3K or PDPK1 activates CMA. In contrast, selective inhibition of class III PI3Ks does not activate CMA. Isolated liver lysosomes from mice treated with either of two orally bioavailable class I PI3K inhibitors, pictilisib or buparlisib, display elevated CMA activity, and decreased phosphorylation of lysosomal GFAP, with no change in macroautophagy. The findings of this study represent an important first step in repurposing class I PI3K inhibitors to modulate CMA in vivo.


2020 ◽  
Author(s):  
Bryce W.Q. Tan ◽  
Sijie Tan ◽  
Byorn W.L. Tan ◽  
Sheeja Navakkode ◽  
Cheng Yang Ng ◽  
...  

AbstractMammalian Target of Rapamycin (mTOR) is a master regulator of autophagy and lysosomes, and its downstream kinase-dependent pathways have been extensively characterized. Here, we report an unexpected kinase-independent regulation of autophagy and lysosomes by S-nitrosylation at Cys423 position of mTOR that resulted in suppression of VPS34 and PIKfyve-dependent phosphoinositide synthesis. Physiologically, S-nitrosylation of mTOR reduced basal lysosomal proteolysis via nitric oxide synthase (NOS)-mediated synthesis of NO from lysosomal arginine precursor, a marker of cellular nutrition status. Significantly, we found increased lysosomal NOS-mTOR complexes in APP-PS1 Alzheimer’s disease (AD) murine model, and increased mTOR S-nitrosylation in AD patient-derived fibroblasts. Lastly, we demonstrated that pharmacological inhibition of NOS or overexpression of mTORCys423Ala mutant reversed lysosomal and autophagic dysfunction in AD patient-derived fibroblasts, suggesting novel therapeutic strategies for autophagosome-lysosomal activation.


2020 ◽  
Author(s):  
Oliver B. Davis ◽  
Hijai R. Shin ◽  
Chun-Yan Lim ◽  
Emma Y. Wu ◽  
Matthew Kukurugya ◽  
...  

ABSTRACTLysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function and neurodegeneration. The compositional and functional alterations in NPC lysosomes, and how aberrant cholesterol-mTORC1 signaling contributes to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion and enhanced membrane damage. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Anthony O. Fedele ◽  
Christopher G. Proud

Abstract Autophagy is dependent upon lysosomes, which fuse with the autophagosome to complete the autophagic process and whose acidic interior permits the activity of their intraluminal degradative enzymes. Chloroquine (CQ) and bafilomycin A1 (BafA) each cause alkalinisation of the lumen and thus impair lysosomal function, although by distinct mechanisms. CQ diffuses into lysosomes and undergoes protonation, while BafA inhibits the ability of the vacuolar type H+-ATPase (v-ATPase) to transfer protons into the lysosome. In the present study, we examine the impact of CQ and BafA on the activity of mammalian target of rapamycin complex 1 (mTORC1), inhibition of which is an early step in promoting autophagy. We find each compound inhibits mTORC1 signalling, without affecting levels of protein components of the mTORC1 signalling pathway. Furthermore, these effects are not related to these agents’ capacity to inhibit autophagy or the reduction in amino acid supply from lysosomal proteolysis. Instead, our data indicate that the reduction in mTORC1 signalling appears to be due to the accumulation of lysosomal storage material. However, there are differences in responses to these agents, for instance, in their abilities to up-regulate direct targets of transcription factor EB (TFEB), a substrate of mTORC1 that drives transcription of many lysosomal and autophagy-related genes. Nonetheless, our data imply that widely used agents that alkalinise intralysosomal pH are mimetics of acute lysosomal storage disorders (LSDs) and emphasise the importance of considering the result of CQ and BafA on mTORC1 signalling when interpreting the effects of these agents on cellular physiology.


2020 ◽  
Vol 84 (6) ◽  
pp. 1221-1231 ◽  
Author(s):  
Maiko Sakai ◽  
Kohta Ohnishi ◽  
Masashi Masuda ◽  
Hirokazu Ohminami ◽  
Hisami Yamanaka-Okumura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document