Kinetic Study of the Ignition Process of Methane/n-Heptane Fuel Blends under High-Pressure Direct-Injection Natural Gas Engine Conditions

2020 ◽  
Vol 34 (11) ◽  
pp. 14796-14813
Author(s):  
Jingrui Li ◽  
Xinlei Liu ◽  
Haifeng Liu ◽  
Ying Ye ◽  
Hu Wang ◽  
...  
Energy ◽  
2018 ◽  
Vol 163 ◽  
pp. 660-681 ◽  
Author(s):  
Menghan Li ◽  
Qiang Zhang ◽  
Xiaori Liu ◽  
Yuxian Ma ◽  
Qingping Zheng

2020 ◽  
pp. 146808742096087
Author(s):  
Xue Yang ◽  
Yong Cheng ◽  
Pengcheng Wang

The pre-chamber ignition system scavenged with natural gas can effectively improve the in-cylinder combustion process and extend the lean-burn limit of natural gas engines. The scavenging process affects the flow field and fuel-air mixture concentration distribution in the pre-chamber and affects the combustion process in the pre-chamber as well as the ignition process in the main chamber. This has a significant influence on the performance of natural gas engines. It is supposed that the ratio of natural gas remaining in the mixture inside the pre-chamber at the ignition timing affects the combustion process in the pre-chamber. To verify this suppose, an independent injection system for injecting natural gas into the pre-chamber is designed and experiments are carried out on a single-cylinder natural gas engine. The ratio of natural gas remaining in the mixture inside the pre-chamber at the ignition timing is adjusted by changing the injection start angle of the scavenging process. The combustion process in the pre-chamber and the main chamber are analyzed using the in-cylinder pressures. The results indicate that, with the delay of the injection start angle, the ratio of natural gas remaining in the mixture inside the pre-chamber at the ignition timing increases, the combustion process in the pre-chamber is enhanced, the maximum pressure difference between two chambers increases and appears earlier. The energy of the hot jets and the penetration of the jets increase, which enhances the combustion process in the main chamber.


2006 ◽  
Vol 26 (8-9) ◽  
pp. 806-813 ◽  
Author(s):  
Ke Zeng ◽  
Zuohua Huang ◽  
Bing Liu ◽  
Liangxin Liu ◽  
Deming Jiang ◽  
...  

2006 ◽  
Vol 2006.81 (0) ◽  
pp. _1-22_
Author(s):  
Yasuyuki NAKAI ◽  
Wataru ISHIKURA ◽  
Ali MOHAMMADI ◽  
Masahiro SHIOJI ◽  
Eizo TABO

Author(s):  
Menghan Li ◽  
Qiang Zhang ◽  
Guoxiang Li

In this paper, the effects of the injection timing, the injection pressure and the engine load on the combustion noise of a pilot-ignited direct-injection natural-gas engine were explored by analysing the separate components of the in-cylinder pressure. The results suggested that retarding the injection timing and reducing the injection pressure are effective ways of controlling the combustion noise. This can be attributed to the promoted burning rate at advanced injection timings and to the increased injection pressure. However, the effect of the engine load seems to be less obvious, although the resonance pressure level appears to increase with increasing engine load; the estimated combustion noise shows a decreasing tendency.


Sign in / Sign up

Export Citation Format

Share Document