Molecular and Carbon Isotopic Characteristics during Natural Gas Hydrate Decomposition: Insights from a Stepwise Depressurization Experiment on a Pressure Core

Author(s):  
Hongfei Lai ◽  
Yunxin Fang ◽  
Zenggui Kuang ◽  
Donghui Xing ◽  
Xian Li ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Minghui Wei ◽  
Chenghuai Wu ◽  
Yanxi Zhou

In order to solve the problem of hydrate reservoir collapse and hydrate regenerated in the process of solid fluidization of natural gas hydrate, a new method of natural gas hydrate exploit by high‐polymer additive (low viscosity carboxymethyl cellulose LV‐CMC) carbon dioxide jet was proposed. The wellbore temperature and pressure changes during this process are analyzed, and the wellbore temperature and pressure model are established and solved by the state space method. This paper also analyzed the effects of relevant parameters on hydrate decomposition, such as injection flow, temperature, and pressure. The results show that increasing the injection pressure allows the hydrate decomposition site to be closer to the annulus outlet. Compared with water, with polymer additive CO2 fluid as the drilling fluid, the intersection point of phase equilibrium curve and annular pressure curve is closer to annular outlet, which is obviously more conducive to well control. In order to avoid phase changes, the injection pressure of the carbon dioxide fluid of the high‐polymer additive should not be lower than 10 MPa, and the injection temperature should not be higher than 285 K.


2021 ◽  
Vol 18 (2) ◽  
pp. 323-338
Author(s):  
Xiong-Qi Pang ◽  
Zhuo-Heng Chen ◽  
Cheng-Zao Jia ◽  
En-Ze Wang ◽  
He-Sheng Shi ◽  
...  

AbstractNatural gas hydrate (NGH) has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973. At least 29 global estimates have been published from various studies so far, among which 24 estimates are greater than the total conventional gas resources. If drawn in chronological order, the 29 historical resource estimates show a clear downward trend, reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time. A time series of the 29 estimates was used to establish a statistical model for predict the future trend. The model produces an expected resource value of 41.46 × 1012 m3 at the year of 2050. The statistical trend projected future gas hydrate resource is only about 10% of total natural gas resource in conventional reservoir, consistent with estimates of global technically recoverable resources (TRR) in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches. Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources, only those on the very top of the gas hydrate resource pyramid will be added to future energy supply. It is unlikely that the NGH will be the major energy source in the future.


ACS Omega ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 3017-3023
Author(s):  
Song Deng ◽  
Dingkun Ling ◽  
Binbin Zhou ◽  
Yu Gong ◽  
Xin Shen ◽  
...  

2021 ◽  
Author(s):  
Min Zhang ◽  
Ming Niu ◽  
Shiwei Shen ◽  
Shulin Dai ◽  
Yan Xu

Sign in / Sign up

Export Citation Format

Share Document