Variations of Acidic Compounds in Crude Oil during Simulated Aerobic Biodegradation: Monitored by Semiquantitative Negative-Ion ESI FT-ICR MS

2017 ◽  
Vol 31 (2) ◽  
pp. 1126-1135 ◽  
Author(s):  
Yinhua Pan ◽  
Yuhong Liao ◽  
Quan Shi
Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 119004 ◽  
Author(s):  
Shuai Zhao ◽  
Wanfen Pu ◽  
Xiaoqiang Peng ◽  
Jizhou Zhang ◽  
Hao Ren

2018 ◽  
Vol 123 ◽  
pp. 17-26 ◽  
Author(s):  
Weimin Liu ◽  
Yuhong Liao ◽  
Yinhua Pan ◽  
Bin Jiang ◽  
Qing Zeng ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2766 ◽  
Author(s):  
Jandyson Santos ◽  
Alberto Wisniewski Jr. ◽  
Marcos Eberlin ◽  
Wolfgang Schrader

Different ionization techniques based on different principles have been applied for the direct mass spectrometric (MS) analysis of crude oils providing composition profiles. Such profiles have been used to infer a number of crude oil properties. We have tested the ability of two major atmospheric pressure ionization techniques, electrospray ionization (ESI(±)) and atmospheric pressure photoionization (APPI(+)), in conjunction with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The ultrahigh resolution and accuracy measurements of FT-ICR MS allow for the correlation of mass spectrometric (MS) data with crude oil American Petroleum Institute (API) gravities, which is a major quality parameter used to guide crude oil refining, and represents a value of the density of a crude oil. The double bond equivalent (DBE) distribution as a function of the classes of constituents, as well as the carbon numbers as measured by the carbon number distributions, were examined to correlate the API gravities of heavy, medium, and light crude oils with molecular FT-ICR MS data. An aromaticity tendency was found to directly correlate the FT-ICR MS data with API gravities, regardless of the ionization technique used. This means that an analysis on the molecular level can explain the differences between a heavy and a light crude oil on the basis of the aromaticity of the compounds in different classes. This tendency of FT-ICR MS with all three techniques, namely, ESI(+), ESI(−), and APPI(+), indicates that the molecular composition of the constituents of crude oils is directly associated with API gravity.


2021 ◽  
Author(s):  
Rukuan Chai ◽  
Yuetian Liu ◽  
Yuting He ◽  
Qianjun Liu ◽  
Wenhuan Gu

Abstract Tight oil reservoir plays an increasingly important role in the world energy system, but its recovery is always so low. Hence, a more effective enhanced oil recovery (EOR) technology is urgently needed. Meanwhile, greenhouse effect is more and more serious, a more effective carbon capture and sequestration (CCS) method is also badly needed. Direct current voltage assisted carbonated water-flooding is a new technology that combines direct current voltage with carbonated water-flooding to enhance oil recovery and CO2 sequestration efficiency, simultaneously. Experimental studies were conducted from macroscopic-scale to microscopic-scale to study the performance and mechanism of direct current voltage assisted carbonated water-flooding. Firstly, core flood experiments were implemented to study the effect of direct current voltage assisted carbonated water on oil recovery and CO2 sequestration efficiency. Secondly, contact angle and interfacial tension/dilatational rheology were measured to analyze the effect of direct current voltage assisted carbonated water on crude oil-water-rock interaction. Thirdly, total organic carbon (TOC), gas chromatography (GC), and electrospray ionization-fourier transform ion cyclotron resonance-mass spectrometry (ESI FT ICR-MS) were used to investigate the organic composition change of produced effluents and crude oil in direct current voltage assisted carbonated water treatment. Through direct current voltage assisted carbonated water-flooding experiments, the following results can be obtained. Firstly, direct current voltage assisted carbonated waterflooding showed greater EOR capacity and CO2 sequestration efficiency than individual carbonated water and direct current voltage treatment. With the increase of direct current voltage, oil recovery increases to 38.67% at 1.6V/cm which much higher than 29.07% of carbonated water-flooding and then decreases, meanwhile, CO2 output decreases to only 35.5% at 1.6V/cm which much lower than 45.6% of carbonated water-flooding and then increases. Secondly, in direct current voltage assisted carbonated water-flooding, the wettability alteration is mainly caused by carbonated water and the effect of direct current can be neglected. While both carbonated water and direct current have evident influence on interfacial properties. Herein, with direct current voltage increasing, the interfacial tension firstly decreases and then increases, the interfacial viscoelasticity initially strengthens and then weakens. Thirdly, GC results indicated that crude oil cracking into lighter components occurs during direct current voltage assisted carbonated water-flooding, with the short-chain organic components increasing and the long-chain components decreasing. Meanwhile, TOC and ESI FT ICR-MS results illustrated that CO2 electroreduction do occur in direct current voltage assisted carbonated water-flooding with the dissolved organic molecules increases and the emergence of formic acid. Conclusively, the synergy of CO2 electrochemical reduction into formic acid in aqueous solution and the long-chain molecules electrostimulation pyrolysis into short ones in crude oil mutually resulted in the enhancement of crude oil-carbonated water interaction. This paper proposed a new EOR & CCS technology-direct current voltage assisted carbonated water-flooding. It showed great research and application potential on tight oil development and greenhouse gas control. More work needs to be done to further explore its mechanism. This paper constructs a multiscale & interdisciplinary research system to study the multidisciplinary (EOR&CCS) problem. Specifically, a series connected physical (Core displacement, Contact angle, and Interfacial tension/rheology measurements) and chemistry (TOC, GS, and ESI FT ICR-MS) experiments are combined to explore its regularity and several physics (Atomic physics) and chemistry (Electrochemistry/Inorganic Chemistry) theories are applied to explain its mechanisms.


2019 ◽  
Author(s):  
Jiang Bin ◽  
Zhan Zhao-Wen ◽  
Shi Quan ◽  
Liao Yuhong ◽  
Zou Yan-Rong
Keyword(s):  

2018 ◽  
Vol 91 (3) ◽  
pp. 2209-2215 ◽  
Author(s):  
Bin Jiang ◽  
Zhao-Wen Zhan ◽  
Quan Shi ◽  
Yuhong Liao ◽  
Yan-Rong Zou ◽  
...  
Keyword(s):  

Life ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 48 ◽  
Author(s):  
Jasmine Hertzog ◽  
Hiroshi Naraoka ◽  
Philippe Schmitt-Kopplin

The investigation of the abundant organic matter in primitive meteorite such as carbonaceous chondrites is of major interest in the field of origin of life. In this study, the soluble organic fraction of the Murchison meteorite was analyzed by atmospheric pressure photoionization (APPI) and electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), in both detection modes. Such an approach ensured that we obtained an extensive description of the organic matter of the CM2 meteorite. Indeed, while in total close to 16,000 unique features were assigned, only 4% are common to all analyses, illustrating the complementarity of both the detection modes and the ionization sources. ESI FT-ICR MS analysis, in negative-ion mode, ensured to observe specifically CHOS and CHNOS species, whereas the positive-ion mode is more dedicated to the detection of CHNO and CHN species. Moreover, new organomagnesium components were observed in (+) ESI. Eventually, (+) APPI FT-ICR MS analysis was a preferred method for the detection of less polar or nonpolar species such as polycyclic aromatic hydrocarbons but also heteroatom aromatic species composing the organic matter of Murchison.


2013 ◽  
Vol 27 (6) ◽  
pp. 2960-2973 ◽  
Author(s):  
Yinhua Pan ◽  
Yuhong Liao ◽  
Quan Shi ◽  
Chang Samuel Hsu

Author(s):  
Paolo Benigni ◽  
Rebecca Marin ◽  
Kathia Sandoval ◽  
Piero Gardinali ◽  
Francisco Fernandez-Lima

Sign in / Sign up

Export Citation Format

Share Document