Characterization and Correlations of CO2 Absorption Performance into Aqueous Amine Blended Solution of Monoethanolamine (MEA) and N,N-Dimethylethanolamine (DMEA) in a Packed Column

2019 ◽  
Vol 33 (8) ◽  
pp. 7614-7625 ◽  
Author(s):  
Hao Ling ◽  
Sen Liu ◽  
Tianyu Wang ◽  
Hongxia Gao ◽  
Zhiwu Liang
2019 ◽  
Vol 41 (5) ◽  
pp. 820-820
Author(s):  
Pongayi Ponnusamy Selvi and Rajoo Baskar Pongayi Ponnusamy Selvi and Rajoo Baskar

The acidic gas, Carbon dioxide (CO2) absorption in aqueous ammonia solvent was carried as an example for industrial gaseous treatment. The packed column was provided with a novel structured BX-DX packing material. The overall mass transfer coefficient was calculated from the absorption efficiency of the various runs. Due to the high solubility of CO2, mass transfer was shown to be mainly controlled by gas side transfer rates. The effects of different operating parameters on KGav including CO2 partial pressure, total gas flow rates, volume flow rate of aqueous ammonia solution, aqueous ammonia concentration, and reaction temperature were investigated. For a particular system and operating conditions structured packing provides higher mass transfer coefficient than that of commercial random packing.


Author(s):  
Nayef Mohamed Ghasem ◽  
Nihmiya Abdul Rahim ◽  
Mohamed Al-Marzouqi

Polymeric membrane is a promising energy effective and an active alternative for conventional CO2 absorption column. The type of absorption liquid and operating parameters plays an efficient role in the ultimate absorption/stripping performance using gas-liquid membrane contactor. The gas flow rate has a significant effect on CO2 absorption performance, by contrast, it has no effect on stripping performance. Further the CO2 absorption performance in membrane contactor could be enhanced by high liquid flow rates. Because the gas–liquid contact time was a key factor to enhance the stripping flux at low temperature while liquid phase boundary layer thickness and associated mass transfer resistance is important at elevated temperature. So by controlling the liquid phase velocity and the length of module at low temperature better stripping performance can be achieved. The effect of liquid temperature on absorption performance in gas-liquid is not straightforward, since the liquid temperature cooperatively influence several factors.


Author(s):  
Ravinder Kumar ◽  
Mohammad Hossein Ahmadi ◽  
Dipen Kumar Rajak ◽  
Mohammad Alhuyi Nazari

Abstract Greenhouse gases emissions from large scale industries as well as gasoline based vehicles are mainly responsible for global warming since the 1980s. At present, it has triggered global efforts to reduce the level of GHG. The contribution of carbon dioxide (CO2) in polluting the environment is at a peak due to the excessive use of coal in power plants. So, serious attention is required to reduce the level of CO2 using advanced technologies. Carbon dioxide capture and storage may play an important role in this direction. In process industries, various carbon dioxide capture techniques can be used to reduce CO2 emissions. However, post-combustion carbon dioxide capture is on top priority. Nowadays the researcher is focusing their work on CO2 capture using hybrid solvent. This work highlights a review of carbon dioxide capture using various kind of hybrid solvent in a packed column. The various challenges for absorption efficiency enhancement and future direction are also discussed in the present work. It is concluded through the literature survey that hybrid solvent shows better efficiency in comparison to the aqueous solution used for CO2 capture.


2020 ◽  
Vol 28 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Hualing Duan ◽  
Kun Zhu ◽  
Houfang Lu ◽  
Changjun Liu ◽  
Kejing Wu ◽  
...  

AIChE Journal ◽  
2017 ◽  
Vol 63 (7) ◽  
pp. 3048-3057 ◽  
Author(s):  
Hongxia Gao ◽  
Bin Xu ◽  
Liang Han ◽  
Xiao Luo ◽  
Zhiwu Liang

Sign in / Sign up

Export Citation Format

Share Document