Novel Insights into the Molecular-Level Mechanism Linking the Chemical Diversity and Copper Binding Heterogeneity of Biochar-Derived Dissolved Black Carbon and Dissolved Organic Matter

Author(s):  
Fanhao Song ◽  
Tingting Li ◽  
Quan Shi ◽  
Fei Guo ◽  
Yingchen Bai ◽  
...  
Chemosphere ◽  
2021 ◽  
Vol 271 ◽  
pp. 129824
Author(s):  
Youhei Yamashita ◽  
Daiki Kojima ◽  
Natsumi Yoshida ◽  
Hideaki Shibata

2009 ◽  
Vol 43 (13) ◽  
pp. 4973-4978 ◽  
Author(s):  
Yuping Qiu ◽  
Xiaoyu Xiao ◽  
Haiyan Cheng ◽  
Zunlong Zhou ◽  
G. Daniel Sheng

2018 ◽  
Vol 15 (21) ◽  
pp. 6637-6648 ◽  
Author(s):  
Yinghui Wang ◽  
Robert G. M. Spencer ◽  
David C. Podgorski ◽  
Anne M. Kellerman ◽  
Harunur Rashid ◽  
...  

Abstract. The Qinghai–Tibet Plateau (QTP) accounts for approximately 70 % of global alpine permafrost and is an area sensitive to climate change. The thawing and mobilization of ice-rich and organic-carbon-rich permafrost impact hydrologic conditions and biogeochemical processes on the QTP. Despite numerous studies of Arctic permafrost, there are no reports to date for the molecular-level in-stream processing of permafrost-derived dissolved organic matter (DOM) on the QTP. In this study, we examine temporal and spatial changes of DOM along an alpine stream (3850–3207 m above sea level) by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), accelerator mass spectrometry (AMS) and UV–visible spectroscopy. Compared to downstream sites, dissolved organic matter (DOM) at the headstream site exhibited older radiocarbon age, higher mean molecular weight, higher aromaticity and fewer highly unsaturated compounds. At the molecular level, 6409 and 1345 formulas were identified as unique to the active layer (AL) leachate and permafrost layer (PL) leachate, respectively. Comparing permafrost leachates to the downstream site, 59 % of AL-specific formulas and 90 % of PL-specific formulas were degraded, likely a result of rapid in-stream degradation of permafrost-derived DOM. From peak discharge in the summer to low flow in late autumn, the DOC concentration at the headstream site decreased from 13.9 to 10.2 mg L−1, while the 14C age increased from 745 to 1560 years before present (BP), reflecting an increase in the relative contribution of deep permafrost carbon due to the effect of changing hydrological conditions over the course of the summer on the DOM source (AL vs. PL). Our study thus demonstrates that hydrological conditions impact the mobilization of permafrost carbon in an alpine fluvial network, the signature of which is quickly lost through in-stream mineralization and transformation.


2019 ◽  
Vol 53 (20) ◽  
pp. 11725-11734 ◽  
Author(s):  
Stephanie M. Berg ◽  
Quinn T. Whiting ◽  
Joseph A. Herrli ◽  
Ronan Winkels ◽  
Kristine H. Wammer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document