Heliobacteria Reveal Fermentation As a Key Pathway for Mercury Reduction in Anoxic Environments

2018 ◽  
Vol 52 (7) ◽  
pp. 4145-4153 ◽  
Author(s):  
D. S. Grégoire ◽  
N. C. Lavoie ◽  
A. J. Poulain



2011 ◽  
Vol 108 (4) ◽  
pp. 1479-1483 ◽  
Author(s):  
B. Gu ◽  
Y. Bian ◽  
C. L. Miller ◽  
W. Dong ◽  
X. Jiang ◽  
...  


2021 ◽  
Author(s):  
Gunther Brucha ◽  
Andrea Aldas-Vargas ◽  
Zacchariah Ross ◽  
Peng Peng ◽  
Siavash Atashgahi ◽  
...  

Abstract2,4-Dichlorophenoxyacetic acid (2,4-D) is the third most applied pesticide in Brazil to control broadleaf weeds in crop cultivation and pastures. Due to 2,4-D’s high mobility and long half-life under anoxic conditions, this herbicide has high probability for groundwater contamination. Bioremediation is an attractive solution for 2,4-D contaminated anoxic environments, but there is limited understanding of anaerobic 2,4-D biodegradation. In this study, methanogenic enrichment cultures were obtained from Amazonian top soil (0—40 cm) and deep soil (50 -80 cm below ground) that biotransform 2,4-D (5 µM) to 4-chlorophenol and phenol. When these cultures were transferred (10% v/v) to fresh medium containing 40 µM or 160 µM 2,4-D, the rate of 2,4-D degradation decreased, and biotransformation did not proceed beyond 4-chlorophenol and 2,4-dichlorophenol in the top and deep soil cultures, respectively. 16S rRNA gene sequencing and qPCR of a selection of microbes revealed no significant enrichment of known organohalide-respiring bacteria. Furthermore, a member of the genus Cryptanaerobacter was identified as possibly responsible for phenol conversion to benzoate in the top soil inoculated culture. Overall, these results demonstrate the effect of 2,4-D concentration on biodegradation and microbial community composition, which are both important factors when developing pesticide bioremediation technologies.



2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrew P. Rees ◽  
Ian J. Brown ◽  
Amal Jayakumar ◽  
Gennadi Lessin ◽  
Paul J. Somerfield ◽  
...  

AbstractNitrous oxide (N2O) is important to the global radiative budget of the atmosphere and contributes to the depletion of stratospheric ozone. Globally the ocean represents a large net flux of N2O to the atmosphere but the direction of this flux varies regionally. Our understanding of N2O production and consumption processes in the ocean remains incomplete. Traditional understanding tells us that anaerobic denitrification, the reduction of NO3− to N2 with N2O as an intermediate step, is the sole biological means of reducing N2O, a process known to occur in anoxic environments only. Here we present experimental evidence of N2O removal under fully oxygenated conditions, coupled with observations of bacterial communities with novel, atypical gene sequences for N2O reduction. The focus of this work was on the high latitude Atlantic Ocean where we show bacterial consumption sufficient to account for oceanic N2O depletion and the occurrence of regional sinks for atmospheric N2O.



Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2547
Author(s):  
Elena Garcia ◽  
Julio Torres ◽  
Nuria Rebolledo ◽  
Raul Arrabal ◽  
Javier Sanchez

Reinforced concrete may corrode in anoxic environments such as offshore structures. Under such conditions the reinforcement fails to passivate completely, irrespective of chloride content, and the corrosion taking place locally induces the growth of discrete pits. This study characterised such pits and simulated their growth from experimentally determined electrochemical parameters. Pit morphology was assessed with an optical profilometer. A finite element model was developed to simulate pit growth based on electrochemical parameters for different cathode areas. The model was able to predict long-term pit growth by deformed geometry set up. Simulations showed that pit growth-related corrosion tends to maximise as cathode area declines, which lower the pitting factor. The mechanical strength developed by the passive and prestressed rebar throughout its service life was also estimated. Passive rebar strength may drop by nearly 20% over 100 years, whilst in the presence of cracking from the base of the pit steel strength may decline by over 40%.



Author(s):  
Yuwei Wang ◽  
Gideon Bartov ◽  
Thomas Wang ◽  
John R. Reinfelder ◽  
Thomas M. Johnson ◽  
...  


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2491
Author(s):  
Elena Garcia ◽  
Julio Torres ◽  
Nuria Rebolledo ◽  
Raul Arrabal ◽  
Javier Sanchez

The number of reinforced concrete structures subject to anoxic conditions such as offshore platforms and geological storage facilities is growing steadily. This study explored the behaviour of embedded steel reinforcement corrosion under anoxic conditions in the presence of different chloride concentrations. Corrosion rate values were obtained by three electrochemical techniques: Linear polarization resistance, electrochemical impedance spectroscopy, and chronopotenciometry. The corrosion rate ceiling observed was 0.98 µA/cm2, irrespective of the chloride content in the concrete. By means of an Evans diagram, it was possible to estimate the value of the cathodic Tafel constant (bc) to be 180 mV dec−1, and the current limit yielded an ilim value of 0.98 µA/cm2. On the other hand, the corrosion potential would lie most likely in the −900 mVAg/AgCl to −1000 mVAg/AgCl range, whilst the bounds for the most probable corrosion rate were 0.61 µA/cm2 to 0.22 µA/cm2. The experiments conducted revealed clear evidence of corrosion-induced pitting that will be assessed in subsequent research.





2021 ◽  
pp. SP523-2021-73
Author(s):  
D. V. Palcu ◽  
W. Krijgsman

AbstractA complex interplay of palaeoclimatic, eustatic and tectonic processes led to fragmentation and dissipation of the vast Tethys Ocean in Eocene-Oligocene times. The resulting Paratethys Sea occupied the northern Tethys region on Eurasia, grouping water masses of various subbasins, separated from each other and from the open ocean through narrow and shallow gateways and land bridges. Changes in marine gateway configuration and intra-basinal connectivity affected the regional hydrology, shifting most Paratethyan basins to extreme carbon-sink anoxic environments, anomalohaline evaporitic or brackish conditions or even endorheic lakes. Paratethys gateway restriction triggered the onset of a long-lasting (∼20 Myr) giant anoxic sea, characterised by stratified water masses and anoxic bottom water conditions, resulting in thick hydrocarbon source rocks. Here, we review the geological evolution of the “dire straits” of Paratethys that played a crucial role in the Eocene-Oligocene connectivity history of the Central Eurasian seas and we show that the main anoxic phases (Kuma and Maikop) correspond to restricted connectivity with the global ocean and a period of CO2 depletion in the atmosphere. Paratethys represents one of the largest carbon sinks of Earth's history and may thus have played a prominent role in global climate change.



Sign in / Sign up

Export Citation Format

Share Document