Elucidating the Elementary Reaction Pathways and Kinetics of Hydroxyl Radical-Induced Acetone Degradation in Aqueous Phase Advanced Oxidation Processes

2018 ◽  
Vol 52 (14) ◽  
pp. 7763-7774 ◽  
Author(s):  
Divya Kamath ◽  
Stephen P. Mezyk ◽  
Daisuke Minakata
Author(s):  
Zahia Benredjem ◽  
Karima Barbari ◽  
Imene Chaabna ◽  
Samia Saaidia ◽  
Abdelhak Djemel ◽  
...  

Abstract The Advanced Oxidation Processes (AOPs) are promising environmentally friendly technologies for the treatment of wastewater containing organic pollutants in general and particularly dyes. The aim of this work is to determine which of the AOP processes based on the Fenton reaction is more effective in degrading the methyl orange (MO) dye. The comparative study of the Fenton, photo-Fenton (PF) and electro-Fenton (EF) processes has shown that electro-Fenton is the most efficient method for oxidizing Methyl Orange. The evolution of organic matter degradation was followed by absorbance (discoloration) and COD (mineralization) measurements. The kinetics of the MO degradation by the electro-Fenton process is very rapid and the OM degradation rate reached 90.87% after 5 min. The influence of some parameters such as the concentration of the catalyst (Fe (II)), the concentration of MO, the current density, the nature and the concentration of supporting electrolyte was investigated. The results showed that the degradation rate increases with the increase in the applied current density and the concentration of the supporting electrolyte. The study of the concentration effect on the rate degradation revealed optimal values for the concentrations 2.10−5 M and 75 mg L−1 of Fe (II) and MO respectively.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3398 ◽  
Author(s):  
John F. Guateque-Londoño ◽  
Efraím A. Serna-Galvis ◽  
Yenny Ávila-Torres ◽  
Ricardo A. Torres-Palma

In this work, the degradation of the pharmaceutical losartan, in simulated fresh urine (which was considered because urine is the main excretion route for this compound) by sonochemistry and UVC/H2O2 individually, was studied. Initially, special attention was paid to the degrading action of the processes. Then, theoretical analyses on Fukui function indices, to determine electron-rich regions on the pharmaceutical susceptible to attacks by the hydroxyl radical, were performed. Afterward, the ability of the processes to mineralize losartan and remove the phyto-toxicity was tested. It was found that in the sonochemical treatment, hydroxyl radicals played the main degrading role. In turn, in UVC/H2O2, both the light and hydroxyl radical eliminated the target contaminant. The sonochemical system showed the lowest interference for the elimination of losartan in the fresh urine. It was established that atoms in the imidazole of the contaminant were the moieties most prone to primary transformations by radicals. This was coincident with the initial degradation products coming from the processes action. Although both processes exhibited low mineralizing ability toward losartan, the sonochemical treatment converted losartan into nonphytotoxic products. This research presents relevant results on the elimination of a representative pharmaceutical in fresh urine by two advanced oxidation processes.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 169 ◽  
Author(s):  
Silvia Franz ◽  
Ermelinda Falletta ◽  
Hamed Arab ◽  
Sapia Murgolo ◽  
Massimiliano Bestetti ◽  
...  

Carbamazepine (CBZ) is a pharmaceutical compound recalcitrant to conventional wastewater treatment plants and widely detected in wastewater bodies. In the present study, advanced oxidation processes for carbamazepine removal are investigated, with particular regard to the degradation pathways of carbamazepine by photoelectrocatalysis and conventional photocatalysis. Photoelectrocatalysis was carried out onto TiO2 meshes obtained by Plasma Electrolytic Oxidation, a well-known technique in the field of industrial surface treatments, in view of an easy scale-up of the process. By photoelectrocatalysis, 99% of carbamazepine was removed in 55 min while only 65% removal was achieved by photolysis. The investigation of the transformation products (TPs) was carried out by means of UPLC-QTOF/MS/MS. Several new TPs were identified and accordingly reaction pathways were proposed. Above 80 min the transformation products disappear, probably forming organic acids of low-molecular weight as final degradation products. The results demonstrated that photoelectrocatalysis onto TiO2 meshes obtained by plasma electrolytic oxidation is a useful alternative to common advanced oxidation processes as wastewater tertiary treatment aimed at removing compounds of emerging concern.


2011 ◽  
Vol 11 (1) ◽  
pp. 129-134 ◽  
Author(s):  
A. Dulov ◽  
N. Dulova ◽  
Y. Veressinina ◽  
M. Trapido

The degradation of propoxycarbazone-sodium, an active component of commercial herbicide, in aqueous solution with ozone, UV photolysis and advanced oxidation processes: O3/UV, O3/UV/H2O2, H2O2/UV, and the Fenton process was studied. All these methods of degradation proved feasible. The kinetics of propoxycarbazone-sodium degradation in water followed the pseudo-first order equation for all studied processes except the Fenton treatment. The application of schemes with ozone demonstrated low pseudo-first order rate constants within the range of 10−4 s−1. Addition of UV radiation to the processes improved the removal of propoxycarbazone-sodium and increased the pseudo-first order rate constants to 10−3 s−1. The Fenton process was the most efficient and resulted in 5 and 60 s of half-life and 90% conversion time of propoxycarbazone-sodium, respectively, at 14 mM H2O2 concentration. UV treatment and the Fenton process may be recommended for practical application in decontamination of water or wastewater.


1996 ◽  
Vol 122 (1) ◽  
pp. 58-62 ◽  
Author(s):  
Andrew Hong ◽  
Mark E. Zappi ◽  
Chiang Hai Kuo ◽  
Donald Hill

2020 ◽  
pp. 127379 ◽  
Author(s):  
Erick R. Bandala ◽  
Renata Sadek ◽  
Jacek Gurgul ◽  
Kazimierz Łątka ◽  
Małgorzata Zimowska ◽  
...  

2019 ◽  
Vol 17 (2) ◽  
pp. 254-265 ◽  
Author(s):  
A. Derbalah ◽  
M. Sunday ◽  
R. Chidya ◽  
W. Jadoon ◽  
H. Sakugawa

Abstract In this study, the kinetics of photocatalytic removal of imidacloprid, a systemic chloronicotinoid insecticide, from water using two advanced oxidation systems (ZnO(normal)/H2O2/artificial sunlight and ZnO(nano)/H2O2/artificial sunlight) were investigated. Moreover, the effects of pH, insecticide concentration, catalyst concentration, catalyst particle size, and water type on the photocatalytic removal of imidacloprid were evaluated. Furthermore, total mineralization of imidacloprid under these advanced oxidation systems was evaluated by monitoring the decreases in dissolved organic carbon (DOC) concentrations and formation rate of inorganic ions (Cl− and NO2−) with irradiation time using total organic carbon (TOC) analysis and ion chromatography to confirm the complete detoxification of imidacloprid in water. The degradation rate of imidacloprid was faster under the ZnO(nano)/H2O2/artificial sunlight system than the ZnO(normal)/artificial sunlight system in both pure and river water. The photocatalytic degradation of imidacloprid under both advanced oxidation systems was affected by pH, catalyst concentration, imidacloprid concentration, and water type. Almost complete mineralization of imidacloprid was only achieved in the ZnO(nano)/H2O2/artificial sunlight oxidation system. The photogeneration rate of hydroxyl radicals was higher under the ZnO(nano)/H2O2/artificial sunlight system than the ZnO(normal)/H2O2/artificial sunlight system. Advanced oxidation processes, particularly those using nanosized zinc oxide, can be regarded as an effective photocatalytic method for imidacloprid removal from water.


Sign in / Sign up

Export Citation Format

Share Document