Degradation of propoxycarbazone-sodium with advanced oxidation processes

2011 ◽  
Vol 11 (1) ◽  
pp. 129-134 ◽  
Author(s):  
A. Dulov ◽  
N. Dulova ◽  
Y. Veressinina ◽  
M. Trapido

The degradation of propoxycarbazone-sodium, an active component of commercial herbicide, in aqueous solution with ozone, UV photolysis and advanced oxidation processes: O3/UV, O3/UV/H2O2, H2O2/UV, and the Fenton process was studied. All these methods of degradation proved feasible. The kinetics of propoxycarbazone-sodium degradation in water followed the pseudo-first order equation for all studied processes except the Fenton treatment. The application of schemes with ozone demonstrated low pseudo-first order rate constants within the range of 10−4 s−1. Addition of UV radiation to the processes improved the removal of propoxycarbazone-sodium and increased the pseudo-first order rate constants to 10−3 s−1. The Fenton process was the most efficient and resulted in 5 and 60 s of half-life and 90% conversion time of propoxycarbazone-sodium, respectively, at 14 mM H2O2 concentration. UV treatment and the Fenton process may be recommended for practical application in decontamination of water or wastewater.

2011 ◽  
Vol 255-260 ◽  
pp. 4222-4226
Author(s):  
Li Chin Chuang ◽  
Chin Hsiang Luo ◽  
Sing Wei Huang ◽  
Chun Ju Lin

The removal efficiencies of sulfamerazine (SMR) and sulfamethoxypyridazine (SMP) in aqueous solutions were studied using advanced oxidation technologies. The results show similar removal kinetics for two sulfa pharmaceuticals and that complete removal of all is achieved within 90 min of ozonation at the concentration of O3 (1 mgL-1) without controlling the pH. The rate constants were calculated as 0.0143 and 0.0113 min-1 for SMR and SMP, respectively. The catalysts exhibited a superior removal efficiency of SMP to those of SMR with a TiO2 concentration of 2.0 gL-1. The disappearance of these two sulfa pharmaceuticals follows a pseudo-first-order kinetics according to the Langmuir-Hinshelwood (L-H) model. The rate constants were calculated as 5 × 10-3 and 6 × 10-4 min-1 for SMR and SMP, respectively. Advanced oxidation processes (AOPs), such as O3 and UV/TiO2 processes should be an effective treatment for removing these sulfa pharmaceuticals.


2018 ◽  
Vol 21 (2) ◽  
pp. 98-105 ◽  

<p>Three different advanced oxidation processes (AOPs) were applied to investigate the removal of emerging contaminants (ECs) i.e. sulfamethoxazole (SMX), diclofenac (DCF) and carbamazepine (CBZ) in synthetically prepared solutions. The degradation of these substances was carried out by ozonation, sonolysis and photocatalytic oxidation, as well as by different combinations of these processes. The objectives of this work were to evaluate the removal efficiency in each AOP and to assess the performance variation of sonolysis in combination with other AOPs. The best performances were achieved by sonocatalysis, which resulted in the removal of the selected pharmaceuticals in the range between 37% and 47%. Under similar experimental conditions, the removal of the selected ECs by single compounds by ozonation was slightly lower than the removal of respective compounds in the mixture. Moreover, pseudo first-order removal rate constants of photocatalytic mineralization were determined as 9.33×10-2, 4.90×10-3, 1.06×10-2 min-1 for SMX, DCF and CBZ, respectively.</p>


2018 ◽  
Vol 7 (1) ◽  
pp. 61-67
Author(s):  
Do Ngoc Khue ◽  
Tran Dai Lam ◽  
Dao Duy Hung ◽  
Vu Quang Bach ◽  
Nguyen Van Anh ◽  
...  

AbstractSeveral advanced oxidation processes have been performed for the decomposition of ester nitrates (ENs), such as nitroglycerine (NG) and pentaerythritol tetranitrate (PETN). The reaction kinetics for removing NG and PETN by some of the advanced oxidation processes (e.g. UV-H2O2, Fenton, UV-Fenton) followed the pseudo-first-order model. The reaction rates in different systems followed the sequence ENs/UV<ENs/H2O2<ENs/UV-H2O2<ENs/Fenton<ENs/UV-Fenton. The effect of various parameters, such as pH, concentration of hydrogen peroxide, and temperature, on the degradation of NG and PETN were studied.


2007 ◽  
Vol 4 (5) ◽  
pp. 355 ◽  
Author(s):  
Józef Ziajka ◽  
Krzysztof J. Rudzinski

Environmental context. Chlorophenols pollute natural waters and soils, as well as urban waste water systems. Although toxic and carcinogenic to animals and humans, a detailed knowledge of their action is limited. A new approach to effective degradation in the environment is advanced oxidation processes with sulfate radicals. The radicals can originate from the oxidation of sulfur dioxide or sulfites to make these common pollutants and food additives interact with chlorophenols. The main goal of this work is to determine rate constants for reactions of these chlorophenols with sulfate radicals in order to shed some light on the chemical kinetics of these reactions. Abstract. Kinetic experiments have shown that six chlorophenols (CPs) inhibit the autoxidation of SIV catalysed by Fe(ClO4)3 in aqueous solution at 25°C and pH ≈ 3.0. Efficiency of the inhibition decreases with the number of chlorine substituents for all CPs except for 2,5-dichlorophenol (2,5-DCP), which ranked between the tri- and tetrachlorophenols. The inhibition is explained by reactions of chlorophenols with sulfate radicals, the chain carriers in the mechanism of autoxidation. Rate constants for these reactions are determined for the first time, using the reversed-rates method with ethanol as a reference inhibitor: 8.7 × 109 (4-CP), 7.4 × 109 (2,4-DCP), 1.9 × 109 (2,5-DCP), 2.4 × 109 (2,4,5-TCP), 2.9 × 109 (2,4,6-TCP), and 7.5 × 108 (2,3,5,6-TTCP); 4.3 × 107 (ethanol reference) M–1 s–1. Linear correlations were derived for the estimation of rate constants for the remaining chlorophenols using sums of Brown substituent coefficients or relative strengths of O–H bonds. The results can be used in the development of advanced oxidation processes that utilise sulfate radicals for mineralisation of chlorophenols in wastewaters, and also demonstrate that chlorophenols can extend the lifetimes of SO2 and sulfites in natural and atmospheric waters.


1977 ◽  
Vol 23 (9) ◽  
pp. 1527-1530 ◽  
Author(s):  
R M Shoucri ◽  
M Pouliot

Abstract The Jaffé reaction for creatinine assay appears to follow pseudo-first-order kinetics; first-order rate constants are different for different samples. Rate constants for 10 different serum samples varied from a low value of 0.0040 +/- 0.0003 s-1 to 0.0084 +/- 0.0008 s-1. We describe an approach for determining first-order rate constants from kinetic data and discuss the effects of the above observations on the mathematical formulations required for reliable kinetic determinations of creatinine.


1988 ◽  
Vol 66 (10) ◽  
pp. 2524-2531 ◽  
Author(s):  
John W. Bunting ◽  
Mark A. Luscher

The kinetics of the reduction of the 3-cyano-1-methylquinolinium, 4-cyano-2-methylisoquinolinium, and 2-methyl-5-nitro-isoquinolinium cations by 9,10-dihydro-10-methylacridine, and also the reduction of these same three cations as well as the 10-methylacridinium cation by 5,6-dihydro-5-methylphenanthridine, have been investigated in 20% acetonitrile – 80% water, ionic strength 1.0, 25 °C. The reactions of the 2-methyl-5-nitroisoquinolinium cation with both reductants, and also of the 4-cyano-2-methylisoquinolinium cation with 9,10-dihydro-10-methylacridine, display kinetic saturation effects in the pseudo-first-order rate constants as a function of heterocyclic cation concentration. These effects are consistent with the formation of 1:1 association complexes between hydride donor and acceptor prior to the rate-determining step of the reduction. The second-order rate constants for these reactions, and also those for analogous heterocyclic cation reductions by 1,4-dihydronicotinamides, show systematic variations as a function of the hydride donor and acceptor species.


1983 ◽  
Vol 23 (02) ◽  
pp. 377-386 ◽  
Author(s):  
J.M. Paul ◽  
T.F. Tsui ◽  
J.T. Edwards ◽  
B.G. Holmes ◽  
P.B. Venuto

Abstract This paper presents data on mineralogy and laboratory chemical-leaching tests for ore samples from several areas of the south Texas tertiary Catahoula formation. Optical microscope, electron microprobe, spectroscopic, X-ray diffraction (XRD), and various chemical analyses were performed. Batch screening tests gave qualitative estimates of leach rate and potential recovery. Packed column tests using hydrogen peroxide or pressurized oxygen gave more quantitative recovery estimates. The frequently friable sandstones contained highly variable amounts of quartz, feldspar, calcite, and clay, and in some cases, zeolite or mica. Clays were mainly mixed layer illite/smectite type. High cation exchange capacities (CEC's) correlated. with clay (and zeolite) content, while high reducing capacities were often associated with pyrite level. Coffinite, in various environments, was pyrite level. Coffinite, in various environments, was the main uranium mineral. With batch tests using pseudo-first-order rate constants, ore leach rates were pseudo-first-order rate constants, ore leach rates were generally characterized as "fast" on a scale of fast, intermediate, and slow. However, there was variability in leach rates, both in samples from different areas and in samples taken at different depths in the same well. Fast rates and recoveries greater than 80% were observed in most column pack tests, but there was variation with leachate composition and sample source. The chemistry and kinetics of leaching are also discussed. Introduction In-situ leaching has become an important alternative to open-pit and shaft-mining recovery of uranium. It has the potential of recovering reserves not presently minable by conventional techniques with minimal disturbance of the surface environment. Water requirements of in-situ leaching can be up to 30 times less than a comparable mine, and there are no undesirable tailings ponds. It is physically less hazardous than conventional mining methods. The increasing number of commercial scale in-situ operations is evidence of the emerging potential of this mining method. As more forms of alternative energy are sought to offset shortages and dependency on imported oil, increased production of uranium is inevitable. Current uranium production from in-situ mining is estimated to be 9% of the U.S. total. Considerable uranium reserves are found in south Texas in the Oakville (Miocene) and Catahoula (Oligocene) formations and the Jackson formation (Eocene). The importance of this resource is evidenced by the number of leaching permits issued by the State of Texas in the past 6 years. Larson reviewed early leaching activities in south Texas and other areas of the U.S. Many leaching studies have been reported for south Texas, including laboratory kinetics of leaching, case histories of field operations, and commercialsize projects. The existence of about 12 pilot and commercial-scale; in-situ leaching operations in south Texas indicates the great interest in this technology. The distribution of these sites parallels the Texas coast. They are also generally located in arid, gently rolling terrain. P. 377


2020 ◽  
Vol 82 (11) ◽  
pp. 2425-2431
Author(s):  
A. M. Wang ◽  
C. H. Wu ◽  
E. H. Huang

Abstract This study investigates the removal of sulfamethizole (SFZ) in ozone (O3), O3/Na2S2O8 (sodium persulfate), UV/Na2S2O8, UV/O3, and UV/O3/Na2S2O8 systems. The effects of pH and salinity on SFZ mineralization were evaluated. The mineralization of SFZ followed pseudo-first-order kinetics. At pH 5, the rate constants of SFZ mineralization in O3, O3/Na2S2O8, UV/Na2S2O8, UV/O3, and UV/O3/Na2S2O8 systems were 0.576, 0.924, 0.702, 1.26, and 5.21 h−1, respectively. The SFZ mineralization rate followed the order pH 5 &gt; pH 7 &gt; pH 9 in all tested advanced oxidation processes. Salinity increased the rate of SFZ mineralization in O3 and O3/Na2S2O8 systems and decelerated it in UV/Na2S2O8, UV/O3, and UV/O3/Na2S2O8 systems. UV/O3/Na2S2O8 was the best system for mineralizing SFZ, and sulfate radicals were the predominant species in UV/O3/Na2S2O8.


1988 ◽  
Vol 66 (12) ◽  
pp. 3056-3059 ◽  
Author(s):  
Przemysław Sanecki ◽  
Edward Rokaszewski

Hydrolysis of 16 compounds ClO2S—Ar—B—Ar—SO2Cl (B, bridge) in 20% H2O, 80% v/v CH3CO2H, 0.5 mol dm−3 CH3CO2Na at 298.15 K has been investigated by a polarographic method. From plots of the hydrolysis, pseudo-first-order rate constants for two consecutive reactions [Formula: see text] have been computed and the influence of -SO2Cl groups, bridges B, and SO3− groups on the reactivity of -SO2Cl groups has been discussed. The ratio of rate constants k2/k1 ranges from 0.45 to 30, depending on the structure. Log (k1/(2kH)) correlated linearly with [Formula: see text] and log (k2/k1) correlated linearly with ΔpK for the analogous diamine series H2N—Ar—B—Ar—NH2.


2020 ◽  
Vol 26 (2) ◽  
pp. 180332-0
Author(s):  
Hazal Öztürk ◽  
Sibel Barışçı ◽  
Ozge Turkay

The advanced oxidation of paracetamol (PCT), frequently used analgesic, promoted by electro-oxidation (EOX), goethite catalyzed electro-Fenton (GEF) with goethite, ozonation and electro-peroxone (E-peroxone) was investigated. The degradation efficiency of the processes was evaluated considering the decay of PCT versus time. All the processes showed pseudo-first order character for PCT degradation. kobs values, at optimum conditions for an individual process, were defined as 0.0022, 0.0029, 0.0870 and 0.1662 min-1 for EOX, GEF, ozonation and E-peroxone processes, respectively. Where EOX and GEF processes showed poor degradation efficiencies, novel E-peroxone process provided complete removal of PCT. The degradation of the PCT would mostly occur by OH• and molecular O3 due to the higher rate constants achieved at E-peroxone and ozonation. Conversely, with lower kobs values gained at EOX, hydroxyl radicals would not contribute noticeably to the PCT degradation. In GEF process, due to relatively lower OH• production rate, lower kobs values were obtained for the degradation of PCT. The formation of reaction intermediates, aromatics and carboxylic acids, was also determined in this study.


Sign in / Sign up

Export Citation Format

Share Document