Silica Removal Using Magnetic Iron–Aluminum Hybrid Nanomaterials: Measurements, Adsorption Mechanisms, and Implications for Silica Scaling in Reverse Osmosis

2019 ◽  
Vol 53 (22) ◽  
pp. 13302-13311 ◽  
Author(s):  
Yan-Fang Guan ◽  
Mariana Marcos-Hernández ◽  
Xinglin Lu ◽  
Wei Cheng ◽  
Han-Qing Yu ◽  
...  

Desalination ◽  
2014 ◽  
Vol 344 ◽  
pp. 137-143 ◽  
Author(s):  
S. Salvador Cob ◽  
B. Hofs ◽  
C. Maffezzoni ◽  
J. Adamus ◽  
W.G. Siegers ◽  
...  


2016 ◽  
Vol 29 (1) ◽  
pp. 223-233 ◽  
Author(s):  
Keisuke Ikehata ◽  
Yuanyuan Zhao ◽  
Nima Maleky ◽  
Andrew T. Komor ◽  
Michael A. Anderson


Author(s):  
H. K. Plummer ◽  
E. Eichen ◽  
C. D. Melvin

Much of the work reported in the literature on cellulose acetate reverse osmosis membranes has raised new and important questions with regard to the dense or “active” layer of these membranes. Several thickness values and structures have been attributed to the dense layer. To ensure the correct interpretation of the cellulose acetate structure thirteen different preparative techniques have been used in this investigation. These thirteen methods included various combinations of water substitution, freeze drying, freeze sectioning, fracturing, embedding, and microtomy techniques with both transmission and scanning electron microscope observations.It was observed that several factors can cause a distortion of the structure during sample preparation. The most obvious problem of water removal can cause swelling, shrinking, and folds. Improper removal of embedding materials, when used, can cause a loss of electron image contrast and, or structure which could hinder interpretation.



Author(s):  
C. P. Doğan ◽  
R. D. Wilson ◽  
J. A. Hawk

Capacitor Discharge Welding is a rapid solidification technique for joining conductive materials that results in a narrow fusion zone and almost no heat affected zone. As a result, the microstructures and properties of the bulk materials are essentially continuous across the weld interface. During the joining process, one of the materials to be joined acts as the anode and the other acts as the cathode. The anode and cathode are brought together with a concomitant discharge of a capacitor bank, creating an arc which melts the materials at the joining surfaces and welds them together (Fig. 1). As the electrodes impact, the arc is extinguished, and the molten interface cools at rates that can exceed 106 K/s. This process results in reduced porosity in the fusion zone, a fine-grained weldment, and a reduced tendency for hot cracking.At the U.S. Bureau of Mines, we are currently examining the possibilities of using capacitor discharge welding to join dissimilar metals, metals to intermetallics, and metals to conductive ceramics. In this particular study, we will examine the microstructural characteristics of iron-aluminum welds in detail, focussing our attention primarily on interfaces produced during the rapid solidification process.



Author(s):  
Mostefa Ghassoul ◽  
Syed Samsamuddin
Keyword(s):  


2014 ◽  
Vol 4 (2) ◽  
pp. 467-476
Author(s):  
Nisha Sharma ◽  
Jaspal Singh ◽  
Barjinder Kaur

Radionuclides (uranium, thorium, radium, radon gas etc.) are found naturally in air, water, soil and rock. Everyday, we ingest and inhale these radionuclides through the air we breathe and through food and water we take. Out of the internal exposure via ingestion of radionuclides, water contributes the major portion. The natural radioactivity of water is due to the activity transfer from bed rock and soils. In our surveys carried out in the past few years, we have observed high concentrations of uranium and total dissolved solids (TDS) in drinking waters of some southern parts of Punjab State exceeding the safe limits recommended by national and international agencies. The main drinking water source is the underground water procured from different depths. Due to the highly saline taste, disorders in their digestive systems and other ailments, people are installing reverse osmosis (RO) systems in their houses. Some RO systems have been installed on commercial basis. The state government is also in the process of installing community RO systems at the village level. As high values of uranium are also undesired and may pose health hazards due to radioactivity and toxicity of uranium, we have conducted a survey in the field to study the performance of various RO systems for removal of uranium and TDS. Water samples from about forty RO systems from Faridkot, Mansa, Bathinda and Amritsar districts of Punjab State were collected and analyzed. Our results show that some RO systems are able to remove more than 99% of uranium in the underground waters used for drinking purposes. TDS values are also reduced considerably to the desired levels. So RO systems can be used to avoid the risk of unduly health problems posed by high concentrations of uranium and TDS in drinking water.





Sign in / Sign up

Export Citation Format

Share Document