scholarly journals Reducing Mortality from Air Pollution in the United States by Targeting Specific Emission Sources

2020 ◽  
Vol 7 (9) ◽  
pp. 639-645 ◽  
Author(s):  
Sumil K. Thakrar ◽  
Srinidhi Balasubramanian ◽  
Peter J. Adams ◽  
Inês M. L. Azevedo ◽  
Nicholas Z. Muller ◽  
...  
2019 ◽  
Vol 116 (18) ◽  
pp. 8775-8780 ◽  
Author(s):  
Andrew L. Goodkind ◽  
Christopher W. Tessum ◽  
Jay S. Coggins ◽  
Jason D. Hill ◽  
Julian D. Marshall

Fine particulate matter (PM2.5) air pollution has been recognized as a major source of mortality in the United States for at least 25 years, yet much remains unknown about which sources are the most harmful, let alone how best to target policies to mitigate them. Such efforts can be improved by employing high-resolution geographically explicit methods for quantifying human health impacts of emissions of PM2.5 and its precursors. Here, we provide a detailed examination of the health and economic impacts of PM2.5 pollution in the United States by linking emission sources with resulting pollution concentrations. We estimate that anthropogenic PM2.5 was responsible for 107,000 premature deaths in 2011, at a cost to society of $886 billion. Of these deaths, 57% were associated with pollution caused by energy consumption [e.g., transportation (28%) and electricity generation (14%)]; another 15% with pollution caused by agricultural activities. A small fraction of emissions, concentrated in or near densely populated areas, plays an outsized role in damaging human health with the most damaging 10% of total emissions accounting for 40% of total damages. We find that 33% of damages occur within 8 km of emission sources, but 25% occur more than 256 km away, emphasizing the importance of tracking both local and long-range impacts. Our paper highlights the importance of a fine-scale approach as marginal damages can vary by over an order of magnitude within a single county. Information presented here can assist mitigation efforts by identifying those sources with the greatest health effects.


2020 ◽  
Vol 1 (3) ◽  
pp. 100047 ◽  
Author(s):  
Donghai Liang ◽  
Liuhua Shi ◽  
Jingxuan Zhao ◽  
Pengfei Liu ◽  
Jeremy A. Sarnat ◽  
...  

Author(s):  
Minaal Farrukh ◽  
Haneen Khreis

Background: Traffic-related air pollution (TRAP) refers to the wide range of air pollutants emitted by traffic that are dispersed into the ambient air. Emerging evidence shows that TRAP can increase asthma incidence in children. Living with asthma can carry a huge financial burden for individuals and families due to direct and indirect medical expenses, which can include costs of hospitalization, medical visits, medication, missed school days, and loss of wages from missed workdays for caregivers. Objective: The objective of this paper is to estimate the economic impact of childhood asthma incident cases attributable to nitrogen dioxide (NO2), a common traffic-related air pollutant in urban areas, in the United States at the state level. Methods: We calculate the direct and indirect costs of childhood asthma incident cases attributable to NO2 using previously published burden of disease estimates and per person asthma cost estimates. By multiplying the per person indirect and direct costs for each state with the NO2-attributable asthma incident cases in each state, we were able to estimate the total cost of childhood asthma cases attributable to NO2 in the United States. Results: The cost calculation estimates the total direct and indirect annual cost of childhood asthma cases attributable to NO2 in the year 2010 to be $178,900,138.989 (95% CI: $101,019,728.20–$256,980,126.65). The state with the highest cost burden is California with $24,501,859.84 (95% CI: $10,020,182.62–$38,982,261.250), and the state with the lowest cost burden is Montana with $88,880.12 (95% CI: $33,491.06–$144,269.18). Conclusion: This study estimates the annual costs of childhood asthma incident cases attributable to NO2 and demonstrates the importance of conducting economic impacts studies of TRAP. It is important for policy-making institutions to focus on this problem by advocating and supporting more studies on TRAP’s impact on the national economy and health, including these economic impact estimates in the decision-making process, and devising mitigation strategies to reduce TRAP and the population’s exposure.


2021 ◽  
Vol 7 (18) ◽  
pp. eabf4491
Author(s):  
Christopher W. Tessum ◽  
David A. Paolella ◽  
Sarah E. Chambliss ◽  
Joshua S. Apte ◽  
Jason D. Hill ◽  
...  

Racial-ethnic minorities in the United States are exposed to disproportionately high levels of ambient fine particulate air pollution (PM2.5), the largest environmental cause of human mortality. However, it is unknown which emission sources drive this disparity and whether differences exist by emission sector, geography, or demographics. Quantifying the PM2.5 exposure caused by each emitter type, we show that nearly all major emission categories—consistently across states, urban and rural areas, income levels, and exposure levels—contribute to the systemic PM2.5 exposure disparity experienced by people of color. We identify the most inequitable emission source types by state and city, thereby highlighting potential opportunities for addressing this persistent environmental inequity.


2007 ◽  
Vol 166 (8) ◽  
pp. 880-888 ◽  
Author(s):  
F. Dominici ◽  
R. D. Peng ◽  
S. L. Zeger ◽  
R. H. White ◽  
J. M. Samet

Sign in / Sign up

Export Citation Format

Share Document