Utilizing Upconversion Emission to Improve the Photocatalytic Performance of the BiOI Microplate: A Bifunctional Platform for Pollutant Degradation and Hydrogen Production

Author(s):  
Can Wang ◽  
Peng Du ◽  
Laihui Luo ◽  
Yue Tian ◽  
Weiping Li
2016 ◽  
Vol 7 (30) ◽  
pp. 4937-4943 ◽  
Author(s):  
Lianwei Li ◽  
Zhengxu Cai

Perylene diimide-based n-type porous conjugated polymers were prepared and evaluated as photocatalysts for hydrogen production and pollutant degradation applications.


2019 ◽  
Vol 74 (10) ◽  
pp. 937-944 ◽  
Author(s):  
Babiker Y. Abdulkhair ◽  
Mutaz E. Salih ◽  
Nuha Y. Elamin ◽  
A. MA. Fatima ◽  
A. Modwi

AbstractStrenuous efforts have been employed to prepare zinc oxide (ZnO) with eco-friendly methods; however, few studies have reported the fabrication of ZnO using a sustainable procedure. In this study, spherical ZnO nanoparticles were successfully fabricated for photocatalysis applications using a simple and eco-friendly method using an arabinose sugar solution. The ZnO nanoparticles with a wurtzite structure were obtained by combining zinc nitrate and arabinose in water, followed by heating, evaporation, and calcinations at different annealing temperatures. The annealed ZnO photocatalysts were characterised via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The findings revealed a hexagonal wurtzite structure and good crystallinity with crystallite size increasing from 18 to 31 nm by means of an increase in the annealing temperature. The photocatalytic performance was examined to determine the degradation of mix dye waste. The spherical ZnO nanoparticles showed mix pollutant degradation of 84 % in 25 min at 400 °C.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 848
Author(s):  
Jong-Wook Hong

Visible-light-driven hydrogen production through photocatalysis has attracted enormous interest owing to its great potential to address energy and environmental issues. However, photocatalysis possesses several limitations to overcome for practical applications, such as low light absorption efficiency, rapid charge recombination, and poor stability of photocatalysts. Here, the preparation of efficient noble metal–semiconductor hybrid photocatalysts for photocatalytic hydrogen production is presented. The prepared ternary Rh–TiO2–CeO2 hybrid photocatalysts exhibited excellent photocatalytic performance toward the hydrogen production reaction compared with their counterparts, ascribed to the synergistic combination of Rh, TiO2, and CeO2.


Fuel ◽  
2014 ◽  
Vol 130 ◽  
pp. 221-227 ◽  
Author(s):  
Christian Gómez-Solís ◽  
Miguel A. Ruiz-Gómez ◽  
Leticia M. Torres-Martínez ◽  
Isaías Juárez-Ramírez ◽  
Daniel Sánchez-Martínez

2021 ◽  
Vol 45 (36) ◽  
pp. 17025-17036
Author(s):  
Simin Shang ◽  
Huaizhi Yang ◽  
Dajun Shi ◽  
Bowen Dong ◽  
Heling Zhang ◽  
...  

Our well-designed nano-WO3@LZU1 composite photocatalysts were fully characterized. Under simulated sunlight, the hybrid materials showed much higher photocatalytic activity for BBR degradation and MB degradation than WO3 or LZU1, and improved hydrogen production capacity.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940025 ◽  
Author(s):  
Chao Xiong ◽  
Shengsen Zhang ◽  
Yu Zhao ◽  
Min Zheng ◽  
Dongdong Hou ◽  
...  

N-doped TiO2 nanotube arrays were prepared by an electrochemical anodization method and subsequent ammonia annealing. Microstructures, morphology, optical properties and photocatalytic properties of the N-doped TiO2 nanotube arrays were measured and analyzed. In the degradation of Acid Orange II(AO-II), the photocatalytic degradation efficiency of the N-doped TiO2 nanotube arrays assisted by H2O2 are 12 times, 2 times and 5 times higher than TiO2 nanotube arrays, TiO2 nanotube arrays assisted by H2O2 and H2O2, respectively. Experimental results show that the N-doped TiO2 nanotube arrays is a promising photocatalytic material for organic pollutant degradation under visible light, especially under the assistance of H2O2.


2018 ◽  
Vol 22 (09n10) ◽  
pp. 877-885 ◽  
Author(s):  
Qiang Luo ◽  
Kun Zhu ◽  
Shi-Zhao Kang ◽  
Lixia Qin ◽  
Sheng Han ◽  
...  

By facilely pre-implanting Co[Formula: see text] ions in the graphene oxide, a novel 5,15-diphenyl-10,20-di(4-pyridyl)porphyrin pillared graphene oxide was fabricated by means of electrostatic interaction and coordination interaction. It was shown that the morphology and the structure of graphene oxide and pyridylporphyrin nanocomposite were modified by introducing Co[Formula: see text] ions on the interface between graphene oxide and pyridylporphyrin. Furthermore, it was found that the photocatalytic hydrogen evolution activity over the Co[Formula: see text] ions implanted in the graphene oxide and pyridylporphyrin nanocomposite was evidently higher than in the graphene oxide and pyridylporphyrin nanocomposite without Co[Formula: see text]. This confirmed that strong interaction and efficient electron transfer between pyridylporphyrin and graphene oxide are the important reasons for the enhanced photocatalytic activity for hydrogen evolution. Subsequently, this technique will be a simple and efficient approach to optimize the transfer pathway of photogenerated electrons and to improve photocatalytic performance by implanting metal ions in the interface of nanocomposites.


2020 ◽  
Vol 45 (45) ◽  
pp. 24028-24036
Author(s):  
Kyong-Hwan Chung ◽  
Young-Kwon Park ◽  
Eun-Bum Cho ◽  
Byung-Joo Kim ◽  
Sang-Chul Jung

Sign in / Sign up

Export Citation Format

Share Document