Simplistic Synthesis and Enhanced Photocatalytic Performance of Spherical ZnO Nanoparticles Prepared from Arabinose Solution

2019 ◽  
Vol 74 (10) ◽  
pp. 937-944 ◽  
Author(s):  
Babiker Y. Abdulkhair ◽  
Mutaz E. Salih ◽  
Nuha Y. Elamin ◽  
A. MA. Fatima ◽  
A. Modwi

AbstractStrenuous efforts have been employed to prepare zinc oxide (ZnO) with eco-friendly methods; however, few studies have reported the fabrication of ZnO using a sustainable procedure. In this study, spherical ZnO nanoparticles were successfully fabricated for photocatalysis applications using a simple and eco-friendly method using an arabinose sugar solution. The ZnO nanoparticles with a wurtzite structure were obtained by combining zinc nitrate and arabinose in water, followed by heating, evaporation, and calcinations at different annealing temperatures. The annealed ZnO photocatalysts were characterised via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The findings revealed a hexagonal wurtzite structure and good crystallinity with crystallite size increasing from 18 to 31 nm by means of an increase in the annealing temperature. The photocatalytic performance was examined to determine the degradation of mix dye waste. The spherical ZnO nanoparticles showed mix pollutant degradation of 84 % in 25 min at 400 °C.

2002 ◽  
Vol 16 (28n29) ◽  
pp. 4267-4270 ◽  
Author(s):  
LI YANG ◽  
CHENGSHAN XUE ◽  
HUIZHAO ZHUANG ◽  
HUAIXIANG LI ◽  
QINQIN WEI

The gallium nitride (GaN) films have been successfully fabricated on silicon (111) substrates through ammoniating Ga 2 O 3 films deposited by electrophoresis. The structure and composition of the formed films were characterized by Fourier transform infrared (FTIR) transmission spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that the films formed in this study are polycrystalline GaN with hexagonal wurtzite structure.


2011 ◽  
Vol 121-126 ◽  
pp. 1813-1817
Author(s):  
Marivone Gusatti ◽  
Carlos Eduardo Maduro de Campos ◽  
Gilvan Sérgio Barroso ◽  
Daniel Aragão Ribeiro de Souza ◽  
Humberto Gracher Riella ◽  
...  

In this work, the precursors zinc nitrate hexahydrate and zinc chloride were used to synthesize zinc oxide (ZnO) nanocrystals, applying a simple solochemical technique. ZnO rod-like nanostructures were successfully obtained by chemical reaction between NaOH and zinc nitrate hexahydrate at 90 °C. The sample formed by chemical reaction between NaOH and zinc chloride at 90 °C showed the ZnO phase mixed with the Zn5(OH)8Cl2•H2O phase. Only after thermal treatment at 500 °C for 3 hours, the conversion of Zn5(OH)8Cl2•H2O in ZnO was achieved. The samples prepared with different precursors were characterized by X-ray diffraction, Raman spectroscopy and transmission electron microscopy. Rietveld analysis to the X-ray diffraction data indicated that ZnO nanocrystals obtained have hexagonal wurtzite structure and nanometric-sized crystallites.


2021 ◽  
Vol 10 (4) ◽  
pp. 84-87
Author(s):  
Maya Sari ◽  
Yolanda Rati ◽  
Tetty Marta Linda ◽  
Yanuar Hamzah ◽  
Ari Sulistyo Rini

 Abstrak. Dalam rangka mengurangi pemakaian bahan kimia berbahaya, kini telah mulai dikembangkan penggunaan bahan alami pada proses pembentukan nanopartikel. Pada penelitian ini, biosintesis nanopartikel ZnO dilakukan menggunakan ekstrak kulit Ananas comosus sebagai agen capping sekaligus agen pereduksi. Seng nitrat digunakan sebagai prekursor dari ion seng, sedangkan kulit nanas dibuat menjadi ekstrak untuk dimanfaatkan kandungan antioksidannya. Sampel ZnO dipelajari sifat fisisnya dari hasil karakterisasi X-ray diffraction (XRD), scanning electron microscopy (SEM) dan spektroskopi UV-Vis. Berdasarkan pola XRD, nanopartikel ZnO memberikan fasa kristal heksagonal wurtzite dengan ukuran kristal 14 nm. Morfologi SEM masing-masing sampel didapatkan berbentuk bunga atau micro-nanoflower dengan ukuran diameter rata-rata 510 nm dan 560 nm untuk sampel 0,01 M dan 0,025 M. Hasil spektrum absorbansi UV-Vis menunjukkan peningkatan puncak penyerapan cahaya dengan penambahan konsentrasi seng nitrat. Berdasarkan informasi sifat fisis ini, sampel ZnO berpotensi diaplikasikan sebagai material fotokatalis.Abstract. In order to reduce the use of hazardous chemicals, the use of natural ingredients has now been developed in the process of forming nanoparticles. In this study, biosynthesis of ZnO nanoparticles was carried out using Ananas comosus peel extract as capping agent and reducing agent. Zinc nitrate was used as a precursor to zinc ion. The physical properties of ZnO samples were studied from the characterization result of scanning electron microscopy (SEM), UV-Vis spectroscopy, and X-ray diffraction (XRD). The SEM morphology of each different sample was obtained in the form of micro-nanoflower with an average diameter  of 510 nm and 560 nm for 0.01 M and 0.025 M samples, respectively. The UV-Vis absorbance spectrum results showed an increase in the light absorption peak as  zinc nitrate concentration increased. According to the XRD pattern, the ZnO nanoparticles possessed an hexagonal wurtzite crystal phase with a crystal size of 14 nm. Based on this information on physical properties, the ZnO sample has the potential to be applied as a photocatalyst material.


2013 ◽  
Vol 678 ◽  
pp. 91-96
Author(s):  
Krishnan Sambath ◽  
Manickam Saroja ◽  
Muthusamy Venkatachalam ◽  
Krishnan Rajendran ◽  
Kumaravelu Jagatheeswaran

Flower-like ZnO nanostructures have been synthesized using zinc nitrate hexahydrate and hexamethylenetetramine (HMT) by a low-temperature hydrothermal technique. The prepared ZnO nanostructures exhibit hexagonal wurtzite structure, well-defined flower-like morphology, and a strong blue emission photoluminescence. Flower-like ZnO nanostructures consisting of multilayered petals are formed with the length of about 1 μm. All the flower petals exhibit the tapering feature with the root size of 300-500 nm and tip size of 50-100 nm. The prepared ZnO sample has been studied using x-ray diffraction technique, energy dispersive x-ray analysis, scanning electron microscope and FTIR spectroscopy. The photoluminescence spectrum demonstrated two emission bands, a near band edge (NBE) emission in the UV region centering at 386 nm and a high intensity deep band emission (DBE) in the visible region centering at 483 nm.


NanoNEXT ◽  
2021 ◽  
pp. 28-34
Author(s):  
Mohana F. Attia ◽  
Abdelrahman A. Elbadawi

The purpose of this paper is to investigate the structural and optical characteristics of 1-(4-Methylsulfonyl Phenyl)-3-(4-n, n Dimethyl (amino Phenyl)-2-Propen- 1-One (MSPPP) Chalcone doped in ZnO nanoparticles. Part of the aim is to study the characterization of chalcone doped ZnO nanoparticles by several techniques such as X-ray diffraction, Scanning electron microscope, FTIR spectroscopy, and diffuse reflection spectra.  All doped samples showed a hexagonal wurtzite structure. This study has shown that the crystallite size of pure ZnO varied from 23.50 to 27.45 nm and when increasing the chalcone percentage by 0.5 and 1.5%, has increased the crystallite sizes in the range of 33.40–33.80 nm and 33.80–36.20 nm, respectively. The value of the energy gap (Eg) for ZnO nanoparticles was 3.14 eV. For 0.5 and 1.5% chalcone doped ZnO, the energy gap decreased by an order of magnitude 0.16 eV.


2012 ◽  
Vol 576 ◽  
pp. 330-333
Author(s):  
N.Y. Zayana ◽  
M. Rusop

ZnO as a semiconductor with wide direct band gap (3.37 eV) and high exciton binding energy of 60 meV. It has attracted in several applications such as solar cells, field emission, sensor, etc. In this study, different ZnO complex structures were prepared by precipitation method at different molar ratio. Zinc nitrate as zinc source, potassium hydroxide as precipitating agent and sodium dodecly sulphate as surfactant were used to synthesis the ZnO. The effect of different molar ratio on the morphology and size of final product have been investigated. The final products were characterized by X-ray diffraction (XRD) with Cu Kα radiation, field emission scanning electron microscopy (FESEM) with an attached energy dispersive x-ray spectroscopy (EDS) and photoluminescence spectrofluorophotometer (PL). From XRD patterns, all synthesized ZnO shows good crystallinity. Different morphologies of synthesized ZnO were obtained from FESEM including flower composed flakes, flower composed radial rods and single straight rods while the EDS result demonstrates elements Zn and O obtained in the product. A very strong UV emission at ~390 nm observed in PL spectra indicated that the ZnO are of high crystal quality.


2015 ◽  
Vol 12 (4) ◽  
pp. 325-330 ◽  
Author(s):  
Juan Xie ◽  
Meixia Li ◽  
Yongjing Hao ◽  
Xiaocai Meng ◽  
Yuan Meng ◽  
...  

Using only zinc nitrate, ferric nitrate and sodium hydroxide as reactants, rod-like and flower-like α-Fe2O3/ZnO composites were prepared via a simple and rapid solution route by controlling the composition of precursor solution. The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). Photocatalytic activity of the as-prepared α-Fe2O3/ZnO composites was evaluated by degradation of methyl orange (MO) under simulated solar light. The results indicated that both α-Fe2O3/ZnO composites possess higher photocatalytic activity than commercial P25 TiO2. In addition, possible reasons why α-Fe2O3/ZnO composites have excellent photocatalytic performance were discussed.


2015 ◽  
Vol 15 (10) ◽  
pp. 8114-8119 ◽  
Author(s):  
Narinder Kaur ◽  
Sanjeev K. Sharma ◽  
Deuk Young Kim ◽  
Hemant Sharma ◽  
Narinder Singh

We are presenting the first report on the fabrication of imine-bearing ZnO nanoparticle thin films grown on Corning glass by spin coating. The sol was prepared by dissolving imine-bearing ZnO nanoparticles in dimethylsulfoxide (DMSO). The thickness of the films was manipulated to be 125–200 nm. The X-ray diffraction (XRD) analysis showed hexagonal wurtzite structure of imine-bearing ZnO nanoparticles thin films with a (002) preferential orientation. The stretching of chemical bonds of the imine linkage and Zn–O in imine-bearing ZnO nanoparticle thin films was confirmed by fourier transform infrared spectroscopy (FTIR). The grain size of the films increased with increasing the thickness of the films due to the number of coatings and subsequently dried at 200°C. The transmittance of imine-bearing ZnO nanoparticle thin films was observed to be ≥94%, which was in close agreement to pure ZnO thin films in the visible region. The bandgap of imine-bearing ZnO nanoparticle thin films (3.04 eV), evaluated from Tauc’s plot, was observed to be lower than that of pure ZnO (3.21 eV), which is attributed to the interaction of the ZnO nanoparticles with the imine receptor.


2016 ◽  
Vol 34 (2) ◽  
pp. 451-459 ◽  
Author(s):  
Raminder Preet Pal Singh ◽  
I.S. Hudiara ◽  
Shashi Bhushan Rana

AbstractIn the present study, pure ZnO and Fe-doped ZnO (Zn0.97Fe0.03O) nanoparticles were synthesized by simple coprecipitation method with zinc acetate, ferric nitrate and sodium hydroxide precursors. Pure ZnO and Fe-doped ZnO were further calcined at 450 °C, 600 °C and 750 °C for 2 h. The structural, morphological and optical properties of the samples were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and UV-Vis absorption spectroscopy. The X-ray diffraction studies revealed that the as-synthesized pure and doped ZnO nanoparticles have hexagonal wurtzite structure. The average crystallite size was calculated using Debye-Scherrer’s formula. The particle size was found to be in nano range and increased with an increase in calcination temperature. SEM micrographs confirmed the formation of spherical nanoparticles. Elemental compositions of various elements in pure and doped ZnO nanoparticles were determined by EDX spectroscopy. UV-Vis absorption spectra showed red shift (decrease in band gap) with increasing calcination temperature. Effect of calcination on the magnetic properties of Fe-doped ZnO sample was also studied using vibrating sample magnetometer (VSM). M-H curves at room temperature revealed that coercivity and remanent polarization increase with an increase in calcination temperature from 450 °C to 750 °C, whereas reverse effect was observed for magnetization saturation.


2012 ◽  
Vol 528 ◽  
pp. 193-196 ◽  
Author(s):  
Xiao Dong Ai ◽  
Lu Ting Yan ◽  
Y. C. Liu ◽  
T. X. Li ◽  
S. Y. Dou ◽  
...  

ZnO nanotetrapods were prepared by hydrothermal emulsion method. The X-ray diffraction result showed the hexagonal wurtzite structure of the ZnO nanotetrapods. The main morphology of the ZnO whiskers is a nanotetrapod, aside from the sheet- and flower-shaped ZnO. Growth time and cyclohexane dosage exert some influences on the morphology and size of ZnO. In addition, aluminum doping plays an important role on the morphology of ZnO.


Sign in / Sign up

Export Citation Format

Share Document